Systems Science for Engineers and Scholars


Book Description

Brings a powerful toolkit to bear on engineering and scientific endeavors. This book describes the fundamental principles of systems science so engineers and other scholars can put them into practical use at work and in their personal lives. Systems science aims to determine systemic similarities among different disciplines and to develop applicable solutions in many fields of inquiry. Systems Science for Engineers and Scholars readers will discover: Ten systems science principles that open engineers’ and scholars’ horizons to practical insights related to their areas of interest A methodology for designing holistic systems that exhibit resilient behavior to overcome systems’ context uncertainties The most critical current dilemma of humankind—the global environment and energy crises, as well as a systemic, no-nonsense action plan to deal with these issues Independent articles describing how engineers and scholars can utilize systems science creatively in (1) engineering and systemic psychology; (2) delivering value and resolving conflicts; (3) multi-objective, multi-agent decision-making; (4) systems engineering using category theory; (5) holistic risk management using systems of systems failures methodology; and (6) systemic accident and mishap analysis Systems Science for Engineers and Scholars contains a broad spectrum of insights as well as an extensive set of examples and graphics that make it ideal for professionals and students interested in a holistic, systems-oriented approach.




Engineering a Better Future


Book Description

This open access book examines how the social sciences can be integrated into the praxis of engineering and science, presenting unique perspectives on the interplay between engineering and social science. Motivated by the report by the Commission on Humanities and Social Sciences of the American Association of Arts and Sciences, which emphasizes the importance of social sciences and Humanities in technical fields, the essays and papers collected in this book were presented at the NSF-funded workshop ‘Engineering a Better Future: Interplay between Engineering, Social Sciences and Innovation’, which brought together a singular collection of people, topics and disciplines. The book is split into three parts: A. Meeting at the Middle: Challenges to educating at the boundaries covers experiments in combining engineering education and the social sciences; B. Engineers Shaping Human Affairs: Investigating the interaction between social sciences and engineering, including the cult of innovation, politics of engineering, engineering design and future of societies; and C. Engineering the Engineers: Investigates thinking about design with papers on the art and science of science and engineering practice.




Feedback Systems


Book Description

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory




Principles of Systems Science


Book Description

This pioneering text provides a comprehensive introduction to systems structure, function, and modeling as applied in all fields of science and engineering. Systems understanding is increasingly recognized as a key to a more holistic education and greater problem solving skills, and is also reflected in the trend toward interdisciplinary approaches to research on complex phenomena. While the concepts and components of systems science will continue to be distributed throughout the various disciplines, undergraduate degree programs in systems science are also being developed, including at the authors’ own institutions. However, the subject is approached, systems science as a basis for understanding the components and drivers of phenomena at all scales should be viewed with the same importance as a traditional liberal arts education. Principles of Systems Science contains many graphs, illustrations, side bars, examples, and problems to enhance understanding. From basic principles of organization, complexity, abstract representations, and behavior (dynamics) to deeper aspects such as the relations between information, knowledge, computation, and system control, to higher order aspects such as auto-organization, emergence and evolution, the book provides an integrated perspective on the comprehensive nature of systems. It ends with practical aspects such as systems analysis, computer modeling, and systems engineering that demonstrate how the knowledge of systems can be used to solve problems in the real world. Each chapter is broken into parts beginning with qualitative descriptions that stand alone for students who have taken intermediate algebra. The second part presents quantitative descriptions that are based on pre-calculus and advanced algebra, providing a more formal treatment for students who have the necessary mathematical background. Numerous examples of systems from every realm of life, including the physical and biological sciences, humanities, social sciences, engineering, pre-med and pre-law, are based on the fundamental systems concepts of boundaries, components as subsystems, processes as flows of materials, energy, and messages, work accomplished, functions performed, hierarchical structures, and more. Understanding these basics enables further understanding both of how systems endure and how they may become increasingly complex and exhibit new properties or characteristics. Serves as a textbook for teaching systems fundamentals in any discipline or for use in an introductory course in systems science degree programs Addresses a wide range of audiences with different levels of mathematical sophistication Includes open-ended questions in special boxes intended to stimulate integrated thinking and class discussion Describes numerous examples of systems in science and society Captures the trend towards interdisciplinary research and problem solving




INCOSE Systems Engineering Handbook


Book Description

A detailed and thorough reference on the discipline and practice of systems engineering The objective of the International Council on Systems Engineering (INCOSE) Systems Engineering Handbook is to describe key process activities performed by systems engineers and other engineering professionals throughout the life cycle of a system. The book covers a wide range of fundamental system concepts that broaden the thinking of the systems engineering practitioner, such as system thinking, system science, life cycle management, specialty engineering, system of systems, and agile and iterative methods. This book also defines the discipline and practice of systems engineering for students and practicing professionals alike, providing an authoritative reference that is acknowledged worldwide. The latest edition of the INCOSE Systems Engineering Handbook: Is consistent with ISO/IEC/IEEE 15288:2015 Systems and software engineering—System life cycle processes and the Guide to the Systems Engineering Body of Knowledge (SEBoK) Has been updated to include the latest concepts of the INCOSE working groups Is the body of knowledge for the INCOSE Certification Process This book is ideal for any engineering professional who has an interest in or needs to apply systems engineering practices. This includes the experienced systems engineer who needs a convenient reference, a product engineer or engineer in another discipline who needs to perform systems engineering, a new systems engineer, or anyone interested in learning more about systems engineering.




Handbook of Systems Sciences


Book Description

The primary purpose of this handbook is to clearly describe the current state of theories of systems sciences and to support their use and practice. There are many ways in which systems sciences can be described. This handbook takes a multifaceted view of systems sciences and describes them in terms of a relatively large number of dimensions, from natural and engineering science to social science and systems management perspectives. It is not the authors’ intent, however, to produce a catalog of systems science concepts, methodologies, tools, or products. Instead, the focus is on the structural network of a variety of topics. Special emphasis is given to a cyclic–interrelated view; for example, when a theory of systems sciences is described, there is also discussion of how and why the theory is relevant to modeling or practice in reality. Such an interrelationship between theory and practice is also illustrated when an applied research field in systems sciences is explained. The chapters in the handbook present definitive discussions of systems sciences from a wide array of perspectives. The needs of practitioners in industry and government as well as students aspiring to careers in systems sciences provide the motivation for the majority of the chapters. The handbook begins with a comprehensive introduction to the coverage that follows. It provides not only an introduction to systems sciences but also a brief overview and integration of the succeeding chapters in terms of a knowledge map. The introduction is intended to be used as a field guide that indicates why, when, and how to use the materials or topics contained in the handbook.




Systems Science for Engineers and Scholars


Book Description

Systems Science for Engineers and Scholars Brings a powerful toolkit to bear on engineering and scientific endeavors. This book describes the fundamental principles of systems science so engineers and other scholars can put them into practical use at work and in their personal lives. Systems science aims to determine systemic similarities among different disciplines and to develop applicable solutions in many fields of inquiry. Systems Science for Engineers and Scholars readers will discover: Ten systems science principles that open engineers’ and scholars’ horizons to practical insights related to their areas of interest A methodology for designing holistic systems that exhibit resilient behavior to overcome systems’ context uncertainties The most critical current dilemma of humankind—the global environment and energy crises, as well as a systemic, no-nonsense action plan to deal with these issues Independent articles describing how engineers and scholars can utilize systems science creatively in (1) engineering and systemic psychology; (2) delivering value and resolving conflicts; (3) multi-objective, multi-agent decision-making; (4) systems engineering using category theory; (5) holistic risk management using systems of systems failures methodology; and (6) systemic accident and mishap analysis Systems Science for Engineers and Scholars contains a broad spectrum of insights as well as an extensive set of examples and graphics that make it ideal for professionals and students interested in a holistic, systems-oriented approach.




Complex Engineered Systems


Book Description

This book sheds light on the large-scale engineering systems that shape and guide our everyday lives. It does this by bringing together the latest research and practice defining the emerging field of Complex Engineered Systems. Understanding, designing, building and controlling such complex systems is going to be a central challenge for engineers in the coming decades. This book is a step toward addressing that challenge.




Contemporary Issues in Systems Science and Engineering


Book Description

Various systems science and engineering disciplines are covered and challenging new research issues in these disciplines are revealed. They will be extremely valuable for the readers to search for some new research directions and problems. Chapters are contributed by world-renowned systems engineers Chapters include discussions and conclusions Readers can grasp each event holistically without having professional expertise in the field




Rethinking the Fifth Discipline


Book Description

'Fifth Discipline' is one of the very few approaches to management that has attained position on the International Hall of Fame. Professor Flood's book explains and critiques the ideas in straight forward terms. This book makes significant and fundamental improvements to the core discipline - systemic thinking. It establishes crucial developments in systemic thinking in the context of the learning organisation, including creativity and organisational transformation. It is therefore a very important text for strategic planners, organisational change agents and consultants. The main features of the book include: * a review and critique of 'Fifth Discipline' and systemic thinking * an introduction to the gurus of systemic thinking - Senge, Bertalanffy, Beer, Ackoff, Checkland, and Churchman *a redefinition of management through systemic thinking *a guide to choosing, implementing and evaluating improvement strategies *Practical illustrations. Robert Flood is a renowned and authoritative expert in the field of management. He has implemented systemic management in a wide range of organisations in many continents and lectured by invitation in 25 countries, including Japan and the USA. Professor Flood has featured on many radio and TV programs. His book Beyond TQM was nominated for the 'IMC Management Book of the Year 1993'.