Encyclopedia of the United Nations and International Agreements: T to Z


Book Description

This thoroughly revised and updated edition is the most comprehensive and detailed reference ever published on United Nations. The book demystifies the complex workings of the world's most important and influential international body.







The World Encyclopedia of Serial Killers, Volume Four T–Z


Book Description

The 4th volume of this comprehensive work features hundreds of serial killers from Sacramento to Soviet Russia—plus numerous unsolved cases. The World Encyclopedia of Serial Killers is the most complete reference guide on the subject, featuring more than 1,600 entries about the lives and crimes of serial killers from around the world. Defined by the FBI as a person who murders three or more people with a hiatus of weeks or months between murders, the serial killer has presented unique and terrifying challenges to have walked among us since the dawn of time—a fact this extensive record makes chillingly clear. The series concludes with Volume Four, T-Z. Entries include the Terminator Anatoly Yuriyovych Onoprienko; Trailside Killer David Joseph Carpenter; Vampire of Sacramento Richard Trenton Chase; and the Voroshilovgrad Maniac Zaven Almazyan; plus the unsolved cases of the Adelaide Child Murders; the Axeman of New Orleans; the Chillicothe Killer; the Dead Women of Juarez; the Korea Frog Boy Murders; and the Volga Maniac.




Popular Astronomy


Book Description










Maple and Mathematica


Book Description

In the history of mathematics there are many situations in which cal- lations were performed incorrectly for important practical applications. Let us look at some examples, the history of computing the number ? began in Egypt and Babylon about 2000 years BC, since then many mathematicians have calculated ? (e. g. , Archimedes, Ptolemy, Vi` ete, etc. ). The ?rst formula for computing decimal digits of ? was disc- ered by J. Machin (in 1706), who was the ?rst to correctly compute 100 digits of ?. Then many people used his method, e. g. , W. Shanks calculated ? with 707 digits (within 15 years), although due to mistakes only the ?rst 527 were correct. For the next examples, we can mention the history of computing the ?ne-structure constant ? (that was ?rst discovered by A. Sommerfeld), and the mathematical tables, exact - lutions, and formulas, published in many mathematical textbooks, were not veri?ed rigorously [25]. These errors could have a large e?ect on results obtained by engineers. But sometimes, the solution of such problems required such techn- ogy that was not available at that time. In modern mathematics there exist computers that can perform various mathematical operations for which humans are incapable. Therefore the computers can be used to verify the results obtained by humans, to discovery new results, to - provetheresultsthatahumancanobtainwithoutanytechnology. With respectto our example of computing?, we can mention that recently (in 2002) Y. Kanada, Y. Ushiro, H. Kuroda, and M.




Brownian Motion and Stochastic Calculus


Book Description

A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.




東北数學雑誌


Book Description




Impulsive Differential Inclusions


Book Description

Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.