Tackling Turbulent Flows in Engineering


Book Description

The emphasis of this book is on engineering aspects of fluid turbulence. The book explains for example how to tackle turbulence in industrial applications. It is useful to several disciplines, such as, mechanical, civil, chemical, aerospace engineers and also to professors, researchers, beginners, under graduates and post graduates. The following issues are emphasized in the book: - Modeling and computations of engineering flows: The author discusses in detail the quantities of interest for engineering turbulent flows and how to select an appropriate turbulence model; Also, a treatment of the selection of appropriate boundary conditions for the CFD simulations is given. - Modeling of turbulent convective heat transfer: This is encountered in several practical situations. It basically needs discussion on issues of treatment of walls and turbulent heat fluxes. - Modeling of buoyancy driven flows, for example, smoke issuing from chimney, pollutant discharge into water bodies, etc




Engineering Turbulence Modelling and Experiments - 4


Book Description

These proceedings contain the papers presented at the 4th International Symposium on Engineering Turbulence Modelling and Measurements held at Ajaccio, Corsica, France from 24-26 May 1999. It follows three previous conferences on the topic of engineering turbulence modelling and measurements. The purpose of this series of symposia is to provide a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. Turbulence is still one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends more and more on the performance of the turbulence models. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation.




Turbulent Flows


Book Description

This book allows readers to tackle the challenges of turbulent flow problems with confidence. It covers the fundamentals of turbulence, various modeling approaches, and experimental studies. The fundamentals section includes isotropic turbulence and anistropic turbulence, turbulent flow dynamics, free shear layers, turbulent boundary layers and plumes. The modeling section focuses on topics such as eddy viscosity models, standard K-E Models, Direct Numerical Stimulation, Large Eddy Simulation, and their applications. The measurement of turbulent fluctuations experiments in isothermal and stratified turbulent flows are explored in the experimental methods section. Special topics include modeling of near wall turbulent flows, compressible turbulent flows, and more.




Engineering Turbulence Modelling and Experiments 6


Book Description

Proceedings of the world renowned ERCOFTAC (International Symposium on Engineering Turbulence Modelling and Measurements).The proceedings include papers dealing with the following areas of turbulence:·Eddy-viscosity and second-order RANS models ·Direct and large-eddy simulations and deductions for conventional modelling ·Measurement and visualization techniques, experimental studies ·Turbulence control ·Transition and effects of curvature, rotation and buoyancy on turbulence ·Aero-acoustics ·Heat and mass transfer and chemically reacting flows ·Compressible flows, shock phenomena ·Two-phase flows ·Applications in aerospace engineering, turbomachinery and reciprocating engines, industrial aerodynamics and wind engineering, and selected chemical engineering problems Turbulence remains one of the key issues in tackling engineering flow problems. These problems are solved more and more by CFD analysis, the reliability of which depends strongly on the performance of the turbulence models employed. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation. As in other fields of Science, in the rapidly developing discipline of turbulence, swift progress can be achieved only by keeping up to date with recent advances all over the world and by exchanging ideas with colleagues active in related fields.




Engineering Fluid Mechanics


Book Description

Engineering Fluid Mechanics, 12th edition, guides students from theory to application, emphasizing skills like critical thinking, problem solving and modeling to apply fluid mechanics concepts to solve real-world engineering problems. The essential concepts are presented in a clear and concise format, while abundant illustrations, charts, diagrams, and examples illustrate complex topics and highlight the physical reality of fluid dynamics applications. The text emphasizes on technical derivations, presenting derivations of main equation in a step-by-step manner and explaining their holistic meaning in words. The Wales-Wood Model is used throughout the text to solve numerous example problems. This International Adaptation comes with some updates that enhance and expand certain concepts and some organizational changes. The edition provides a wide variety of new and updated solved problems, real-world engineering examples, and end-of-chapter homework problems and has been completely updated to use SI units. The text, though written from civil engineering perspective, adopts an interdisciplinary approach which makes it suitable for engineering students of all majors who are taking a first or second course in fluid mechanics.




Chemical Engineering Terminology


Book Description

This book is a comprehensive collection of chemical engineering terms in a single volume. The book is a useful reference material for the people both at the schools and the industry. Our experience of teaching and research over the years has made us to realize a must book of this kind. Better understanding of the terms helps in better understanding the relevant literature and in communicating with more assurance and less use of words. The book is easy to use as the terms are written in an alphabetical order. Where a term deserves more elaboration, a rather detailed description is provided. The book also contains a number of labeled diagrams which are extremely helpful in comprehending some important terms.




Remote Sensing of Turbulence


Book Description

This book offers a unique multidisciplinary integration of the physics of turbulence and remote sensing technology. Remote Sensing of Turbulence provides a new vision on the research of turbulence and summarizes the current and future challenges of monitoring turbulence remotely. The book emphasizes sophisticated geophysical applications, detection, and recognition of complex turbulent flows in oceans and the atmosphere. Through several techniques based on microwave and optical/IR observations, the text explores the technological capabilities and tools for the detection of turbulence, their signatures, and variability. FEATURES Covers the fundamental aspects of turbulence problems with a broad geophysical scope for a wide audience of readers Provides a complete description of remote-sensing capabilities for observing turbulence in the earth’s environment Establishes the state-of-the-art remote-sensing techniques and methods of data analysis for turbulence detection Investigates and evaluates turbulence detection signatures, their properties, and variability Provides cutting-edge remote-sensing applications for space-based monitoring and forecasts of turbulence in oceans and the atmosphere This book is a great resource for applied physicists, the professional remote sensing community, ecologists, geophysicists, and earth scientists.







Advances in Fluid Mechanics XI


Book Description

Containing the proceedings of the 11th International Conference on Advances in Fluid Mechanics held in Ancona Italy, AFM 2016 followed the success of previous global conferences in the series, the first of which took place in 1996. The success of the conference continues to attract high quality contributions that present original findings and results. The field of fluid mechanics is extensive and has numerous and varied applications. Emphasis within the book is placed on new applications and research currently in progress. A key purpose is to provide a forum for discussing new work in fluid mechanics and, in particular, for promoting the interchange of new ideas and the presentation on the latest applications in the field. The conference covers a wide range of topics such as: Computational methods; Hydrodynamics; Fluid structure interaction; Bio-fluids; Flow in electronic devices; Environmental fluid mechanics; Heat and mass transfer; Industrial applications; Energy systems; Nano and micro fluids; Turbulent flow Jets Fluidics; Droplet and spray dynamics; Bubble dynamics; Multiphase fluid flow; Aerodynamics and gas dynamics; Pumping and fluid transportation and Experimental measurements.




Fluid Mechanics and Fluid Power (Vol. 1)


Book Description

This book presents the select proceedings of the 48th National Conference on Fluid Mechanics and Fluid Power (FMFP 2021) held at BITS Pilani in December 2021. It covers the topics such as fluid mechanics, measurement techniques in fluid flows, computational fluid dynamics, instability, transition and turbulence, fluid‐structure interaction, multiphase flows, micro- and nanoscale transport, bio-fluid mechanics, aerodynamics, turbomachinery, propulsion and power. The book will be useful for researchers and professionals interested in the broad field of mechanics.