Advanced Techniques for Surface Engineering


Book Description

The hardest requirements on a material are in general imposed at the surface: it has to be wear resistant for tools and bearings; corrosion resistant for turbine blades; antireflecting for solar cells; and it must combine several of these properties in other applications. `Surface engineering' is the general term that incorporates all the techniques by which a surface modification can be accomplished. These techniques include both the more traditional methods, such as nitriding, boriding and carburizing, and the newer ones, such as ion implantation, laser beam melting and, in particular, coating. This book comprises and compares in a unique way all these techniques of surface engineering. It is a compilation of lectures which were held by renowned scientists and engineers in the frame of the well known `EuroCourses' of the Joint Research Centre of the Commission of the European Communities. The book is principally addressed to material and surface scientists, physicists and chemists, engineers and technicians of industries and institutes where surface engineering problems arise.




Introduction to Surface Engineering


Book Description

This highly illustrated reference work covers the three principal types of surface technologies that best protect engineering devices and products: diffusion technologies, deposition technologies, and other less commonly acknowledged surface engineering (SE) techniques. Various applications are noted throughout the text and additionally whole chapters are devoted to specific SE applications across the automotive, gas turbine engine (GTE), metal machining, and biomedical implant sectors. Along with the benefits of SE, this volume also critically examines SE's limitations. Materials degradation pathways - those which can and those which cannot be mitigated by SE - are rigorously explained. Written from a scientific, materials engineering perspective, this concise text is supported by high-quality images and photo-micrographs which show how surfaces can be engineered to overcome the limits of conventionally produced materials, even in complex or hostile operating environments. This book is a useful resource for undergraduate and postgraduate students as well as professional engineers.




Thin Films and Coatings in Biology


Book Description

The surface of materials is routinely exposed to various environmental influences. Surface modification presents a technological challenge for material scientists, physicists, and engineers, particularly when those surfaces are subjected to function within human body environment. This book provides a comprehensive coverage of the major issues and topics dealing with interaction of soft living matter with the surface of implants. Fundamental scientific concepts are embedded through experimental data and a broad range of case studies. First chapters cover the basics on biocompatibility of many different thin films of metals, alloys, ceramics, hydrogels, and polymers, following with case studies dealing with orthopedic and dental coatings. Next, a novel and low-cost coating deposition technique capable of production of several types of nanostructures is introduced through simple calculations and several illustrations. Moreover, chapter 6 and 7 present important topics on surface treatment of polymers, which is a subject that has seen many developments over the past decade. The last chapters target mainly the applications of coatings in biology such as in bio-sensing, neuroscience, and cancer detection. With several illustrations, micrographs, and case studies along with suitable references in each chapter, this book will be essential for graduate students and researchers in the multidisciplinary field of bio-coatings.







Advances In Smart Coatings And Thin Films For Future Industrial and Biomedical Engineering Applications


Book Description

Advances In Smart Coatings And Thin Films For Future Industrial and Biomedical Engineering Applications discusses in detail, the recent trends in designing, fabricating and manufacturing of smart coatings and thin films for future high-tech. industrial applications related to transportation, aerospace and biomedical engineering. Chapters cover fundamental aspects and diverse approaches used to fabricate smart self-healing anti-corrosion coatings, shape-memory coatings, polymeric and nano-bio-ceramic cotings, bio-inspired and stimuli-responsive coatings for smart surfaces with antibacterial activkity and controlled wettability, and electrically conductive coatings and their emerging applications. With the emphasis on advanced methodologies and recent emerging applications of smart multifunctional coatings and thin films, this book is essential reading for materials scientists and rsearchers working in chemical sciences, advanced materials, sensors, pharmaceutical and biomedical engineering. - Discusses the most recent advances and innovations in smart multifunctional coatings and thin films in the transportation, aerospace and biomedical engineering industries - Highlights the synthesis methods, processing, testing and characterization of smart coatings and thin films - Reviews the current prospects and future trends within the industry




Thin Film Coatings for Biomaterials and Biomedical Applications


Book Description

Thin Film Coatings for Biomaterials and Biomedical Applications discusses the latest information on coatings, including their historic use by scientists who are looking to improve the properties and biological responses of the material-host interface. Thin films, in particular, are becoming more widely researched and used as an alternative to traditional sprayed coatings because they have a more uniform structure and therefore greater stability. This book provides readers with a comprehensive guide to thin film coatings and their application in the biomaterials field. Part One of the book details the fundamentals of thin films for biomedical application, while Part Two looks at the special properties of thin films, with a final section reviewing functional thin films and their usage in biomedical applications. - Provides a comprehensive review on the fundamentals, properties, and functions of thin film coatings for biomaterials - Covers a broad range of applications for implantable biomaterials - Written by an international team of contributors who carefully tailor the presented information in a way that addresses industry needs







Plasma Science and Technology for Emerging Economies


Book Description

This book highlights plasma science and technology-related research and development work at institutes and universities networked through Asian African Association for Plasma Training (AAAPT) which was established in 1988. The AAAPT, with 52 member institutes in 24 countries, promotes the initiation and intensification of plasma research and development through cooperation and technology sharing. With 13 chapters on fusion-relevant, laboratory and industrial plasmas for wide range of applications and basic research and a chapter on AAAPT network, it demonstrates how, with collaborations, high-quality, industrially relevant academic and scientific research on fusion, industrial and laboratory plasmas and plasma diagnostics can be successfully pursued in small research labs. These plasma sciences and technologies include pioneering breakthroughs and applications in (i) fusion relevant research in the quest for long-term, clean energy source development using high-temperature, high- density plasmas and (ii) multibillion-dollar, low-temperature, non-equilibrium and thermal industrial plasmas used in processing, synthesis and electronics.




Metals Abstracts


Book Description