Handbook of Radiopharmaceuticals


Book Description

A comprehensive, authoritative and up-to-date reference for the newcomer to radiopharmaceuticals and those already in the field. Radiopharmaceuticals are used to detect and characterise disease processes, or normal biological function, in living cells, animals or humans. Used as tracer molecules, they map the distribution, uptake and metabolism of the molecule in clinical studies, basic research or applied research. The area of radiopharmaceuticals is expanding rapidly. The number of PET centers in the world is increasing at 20% per year, and many drug companies are utilising PET and other forms of radiopharmaceutical imaging to evaluate products. * Readers will find coverage on a number of important topics such as radionuclide production, PET and drug development, and regulations * Explains how to use radiopharmaceuticals for the diagnosis and therapy of cancer and other diseases * The editors and a majority of the contributors are from the United States




Targeted Radionuclide Therapy


Book Description

Radioimmunotherapy, also known as systemic targeted radiation therapy, uses antibodies, antibody fragments, or compounds as carriers to guide radiation to the targets. It is a topic rapidly increasing in importance and success in treatment of cancer patients. This book represents a comprehensive amalgamation of the radiation physics, chemistry, radiobiology, tumor models, and clinical data for targeted radionuclide therapy. It outlines the current challenges and provides a glimpse at future directions. With significant advances in cell biology and molecular engineering, many targeting constructs are now available that will safely deliver these highly cytotoxic radionuclides in a targeted fashion. A companion website includes the full text and an image bank.




Therapeutic Nuclear Medicine


Book Description

The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. This up-to-date, comprehensive book, written by world-renowned experts, discusses the basic principles of radionuclide therapy, explores in detail the available treatments, explains the regulatory requirements, and examines likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the role of the therapeutic nuclear physician in coordinating a diverse multidisciplinary team, which is central to the safe provision of treatment.




Advancing Nuclear Medicine Through Innovation


Book Description

Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.




Holland-Frei Cancer Medicine


Book Description

Holland-Frei Cancer Medicine, Ninth Edition, offers a balanced view of the most current knowledge of cancer science and clinical oncology practice. This all-new edition is the consummate reference source for medical oncologists, radiation oncologists, internists, surgical oncologists, and others who treat cancer patients. A translational perspective throughout, integrating cancer biology with cancer management providing an in depth understanding of the disease An emphasis on multidisciplinary, research-driven patient care to improve outcomes and optimal use of all appropriate therapies Cutting-edge coverage of personalized cancer care, including molecular diagnostics and therapeutics Concise, readable, clinically relevant text with algorithms, guidelines and insight into the use of both conventional and novel drugs Includes free access to the Wiley Digital Edition providing search across the book, the full reference list with web links, illustrations and photographs, and post-publication updates




Handbook of Radiopharmaceuticals


Book Description

The thoroughly updated new edition of the authoritative reference in Radiopharmaceutical Sciences The second edition of Handbook of Radiopharmaceuticals is a comprehensive review of the field, presenting up-to-date coverage of central topics such as radionuclide production, synthetic methodology, radiopharmaceutical development and regulations, and a wide range of practical applications. A valuable reference work for those new to the Radiopharmaceutical Sciences and experienced professionals alike, this volume explores the latest concepts and issues involving both targeted diagnostic and therapeutic radiopharmaceuticals. Contributions from a team of experts from across sub-disciplines provide readers with an immersive examination of radiochemistry, nuclear medicine, molecular imaging, and more. Since the first edition of the Handbook was published, Nuclear Medicine and Radiopharmaceutical Sciences have undergone major changes. New radiopharmaceuticals for diagnosis and therapy have been approved by the FDA, the number of clinical PET and SPECT scans have increased significantly, and advances in Artificial Intelligence have dramatically improved research techniques. This fully revised edition reflects the current state of the field and features substantially updated and expanded content. New chapters cover topics including current Good Manufacturing Practice (cGMP), regulatory oversight, novel approaches to quality control—ensuring that readers are informed of the exciting developments of recent years. This important resource: Features extensive new and revised content throughout Covers key areas of application for diagnosis and therapy in oncology, neurology, and cardiology Emphasizes the multidisciplinary nature of Radiopharmaceutical Sciences Discusses how drug companies are using modern radiopharmaceutical imaging techniques to support drug discovery Examines current and emerging applications of Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) Edited by recognized experts in radiochemistry and PET imaging, Handbook of Radiopharmaceuticals: Radiochemistry and Applications, 2 nd Edition is an indispensable reference for post-doctoral fellows, research scientists, and professionals in the pharmaceutical industry, and for academics, graduate students, and newcomers in the field of radiopharmaceuticals.




Handbook of In Vivo Chemistry in Mice


Book Description

Provides timely, comprehensive coverage of in vivo chemical reactions within live animals This handbook summarizes the interdisciplinary expertise of both chemists and biologists performing in vivo chemical reactions within live animals. By comparing and contrasting currently available chemical and biological techniques, it serves not just as a collection of the pioneering work done in animal-based studies, but also as a technical guide to help readers decide which tools are suitable and best for their experimental needs. The Handbook of In Vivo Chemistry in Mice: From Lab to Living System introduces readers to general information about live animal experiments and detection methods commonly used for these animal models. It focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release. Topics include: currently available mouse models; biocompatible fluorophores; radionuclides for radiodiagnosis/radiotherapy; live animal imaging techniques such as positron emission tomography (PET) imaging; magnetic resonance imaging (MRI); ultrasound imaging; hybrid imaging; biocompatible chemical reactions; ligand-directed nucleophilic substitution chemistry; biorthogonal prodrug release strategies; and various selective targeting strategies for live animals. -Completely covers current techniques of in vivo chemistry performed in live animals -Describes general information about commonly used live animal experiments and detection methods -Focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release -Places emphasis on material properties required for the development of appropriate compounds to be used for imaging and therapeutic purposes in preclinical applications Handbook of In Vivo Chemistry in Mice: From Lab to Living System will be of great interest to pharmaceutical chemists, life scientists, and organic chemists. It will also appeal to those working in the pharmaceutical and biotechnology industries.




Radiopharmaceuticals for Therapy


Book Description

This book provides detailed information on therapeutic radiopharmaceuticals and discusses emerging technologies which have potential for broad clinical implementation. Recent advances in molecular biology, radiopharmaceutical chemistry and radioisotope production have stimulated a new era for the use of radiopharmaceuticals for targeted radionuclide therapy (TRT). Emerging clinical trials include use of peptides and monoclonal antibodies radiolabeled with therapeutic radionuclides for cancer therapy. In addition, small molecules are used for the treatment of chronic diseases such as metastatic bone pain palliation and radiation synovectomy of inflammatory joints. In the interventional arena, therapy of primary and metastatic liver cancer and arterial restenosis following angioplasty of both the coronary and peripheral arteries are being explored. Reactor and accelerator production of therapeutic radioisotopes is also integrated into these discussions. The development and use of radiopharmaceutical targeting characteristics required for treatment of specific disease processes and how these are implemented for radiopharmaceutical design strategies are also described. Radiopharmaceuticals for Therapy will benefit audiences in nuclear medicine and radionuclide therapy and will thus prove an invaluable source of up-to-date information for students, radiopharmaceutical scientists and professionals working in the radiopharmacy and nuclear medicine specialties.




Biomedical Physics in Radiotherapy for Cancer


Book Description

The scientific and clinical foundations of Radiation Therapy are cross-disciplinary. This book endeavours to bring together the physics, the radiobiology, the main clinical aspects as well as available clinical evidence behind Radiation Therapy, presenting mutual relationships between these disciplines and their role in the advancements of radiation oncology.




Stereotactic Body Radiation Therapy


Book Description

Stereotactic body radiation therapy (SBRT) has emerged as an important innovative treatment for various primary and metastatic cancers. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.