America's Lab Report


Book Description

Laboratory experiences as a part of most U.S. high school science curricula have been taken for granted for decades, but they have rarely been carefully examined. What do they contribute to science learning? What can they contribute to science learning? What is the current status of labs in our nation�s high schools as a context for learning science? This book looks at a range of questions about how laboratory experiences fit into U.S. high schools: What is effective laboratory teaching? What does research tell us about learning in high school science labs? How should student learning in laboratory experiences be assessed? Do all student have access to laboratory experiences? What changes need to be made to improve laboratory experiences for high school students? How can school organization contribute to effective laboratory teaching? With increased attention to the U.S. education system and student outcomes, no part of the high school curriculum should escape scrutiny. This timely book investigates factors that influence a high school laboratory experience, looking closely at what currently takes place and what the goals of those experiences are and should be. Science educators, school administrators, policy makers, and parents will all benefit from a better understanding of the need for laboratory experiences to be an integral part of the science curriculum-and how that can be accomplished.




Chemical Education: Towards Research-based Practice


Book Description

Chemical education is essential to everybody because it deals with ideas that play major roles in personal, social, and economic decisions. This book is based on three principles: that all aspects of chemical education should be associated with research; that the development of opportunities for chemical education should be both a continuous process and be linked to research; and that the professional development of all those associated with chemical education should make extensive and diverse use of that research. It is intended for: pre-service and practising chemistry teachers and lecturers; chemistry teacher educators; chemical education researchers; the designers and managers of formal chemical curricula; informal chemical educators; authors of textbooks and curriculum support materials; practising chemists and chemical technologists. It addresses: the relation between chemistry and chemical education; curricula for chemical education; teaching and learning about chemical compounds and chemical change; the development of teachers; the development of chemical education as a field of enquiry. This is mainly done in respect of the full range of formal education contexts (schools, universities, vocational colleges) but also in respect of informal education contexts (books, science centres and museums).




Science Teaching


Book Description

Science Teaching explains how history and philosophy of science contributes to the resolution of persistent theoretical, curricular, and pedagogical issues in science education. It shows why it is essential for science teachers to know and appreciate the history and philosophy of the subject they teach and how this knowledge can enrich science instruction and enthuse students in the subject. Through its historical perspective, the book reveals to students, teachers, and researchers the foundations of scientific knowledge and its connection to philosophy, metaphysics, mathematics, and broader social influences including the European Enlightenment, and develops detailed arguments about constructivism, worldviews and science, multicultural science education, inquiry teaching, values, and teacher education. Fully updated and expanded, the 20th Anniversary Edition of this classic text, featuring four new chapters—The Enlightenment Tradition; Joseph Priestley and Photosynthesis; Science, Worldviews and Education; and Nature of Science Research—and 1,300 references, provides a solid foundation for teaching and learning in the field.




The Sourcebook for Teaching Science, Grades 6-12


Book Description

The Sourcebook for Teaching Science is a unique, comprehensive resource designed to give middle and high school science teachers a wealth of information that will enhance any science curriculum. Filled with innovative tools, dynamic activities, and practical lesson plans that are grounded in theory, research, and national standards, the book offers both new and experienced science teachers powerful strategies and original ideas that will enhance the teaching of physics, chemistry, biology, and the earth and space sciences.




Teaching Secondary Chemistry


Book Description

Key concepts in chemistry -- Introducing particle theory -- Introducing chemical change -- Developing models of chemical bonding -- Extent, rates and energetics of chemical change -- Acids and alkalis -- Combustion and redox reactions -- Electrolysis, electrolytes and galvanic cells -- Inorganic chemical analysis -- Organic chemistry and the chemistry of natural products -- Earth science -- Chemistry in the secondary curriculum.







Learning to Teach Science in the Secondary School


Book Description

Learning to Teach Science in the Secondary School is an indispensable guide with a fresh approach to the process, practice and reality of teaching and learning science in a busy secondary school. This fourth edition has been fully updated in the light of changes to professional knowledge and practice and revisions to the national curriculum. Written by experienced practitioners, this popular textbook comprehensively covers the opportunities and challenges of teaching science in the secondary school. It provides guidance on: • the knowledge and skills you need, and understanding the science department at your school • development of the science curriculum • the nature of science and how science works, biology, chemistry, physics and astronomy, earth science • planning for progression, using schemes of work to support planning , and evaluating lessons • language in science, practical work, using ICT , science for citizenship, Sex and Health Education and learning outside the classroom • assessment for learning and external assessment and examinations Every unit includes a clear chapter introduction, learning objectives, further reading, lists of useful resources and specially designed tasks – including those to support Masters Level work – as well as cross-referencing to essential advice in the core text Learning to Teach in the Secondary School, sixth edition. Learning to Teach Science in the Secondary School is designed to support student teachers through the transition from graduate scientist to practising science teacher, while achieving the highest level of personal and professional development.




Teaching Secondary Physics 3rd Edition


Book Description

Enhance your teaching with expert advice and support for Key Stages 3 and 4 Physics from the Teaching Secondary series - the trusted teacher's guide for NQTs, non-specialists and experienced teachers. Written in association with ASE, this updated edition provides best practice teaching strategies from academic experts and practising teachers. - Refresh your subject knowledge, whatever your level of expertise - Gain strategies for delivering the big ideas of science using suggested teaching sequences - Engage students and develop their understanding with practical activities for each topic - Enrich your lessons and extend knowledge beyond the curriculum with enhancement ideas - Improve key skills with opportunities to introduce mathematics and scientific literacy highlighted throughout - Support the use of technology with ideas for online tasks, video suggestions and guidance on using cutting-edge software - Place science in context; this book highlights where you can apply science theory to real-life scenarios, as well as how the content can be used to introduce different STEM careers Also available: Teaching Secondary Chemistry, Teaching Secondary Biology




Relevant Chemistry Education


Book Description

This book is aimed at chemistry teachers, teacher educators, chemistry education researchers, and all those who are interested in increasing the relevance of chemistry teaching and learning as well as students' perception of it. The book consists of 20 chapters. Each chapter focuses on a certain issue related to the relevance of chemistry education. These chapters are based on a recently suggested model of the relevance of science education, encompassing individual, societal, and vocational relevance, its present and future implications, as well as its intrinsic and extrinsic aspects. “Two highly distinguished chemical educators, Ingo Eilks and AviHofstein, have brought together 40 internationally renowned colleagues from 16 countries to offer an authoritative view of chemistry teaching today. Between them, the authors, in 20 chapters, give an exceptional description of the current state of chemical education and signpost the future in both research and in the classroom. There is special emphasis on the many attempts to enthuse students with an understanding of the central science, chemistry, which will be helped by having an appreciation of the role of the science in today’s world. Themes which transcend all education such as collaborative work, communication skills, attitudes, inquiry learning and teaching, and problem solving are covered in detail and used in the context of teaching modern chemistry. The book is divided into four parts which describe the individual, the societal, the vocational and economic, and the non-formal dimensions and the editors bring all the disparate leads into a coherent narrative, that will be highly satisfying to experienced and new researchers and to teachers with the daunting task of teaching such an intellectually demanding subject. Just a brief glance at the index and the references will convince anyone interested in chemical education that this book is well worth studying; it is scholarly and readable and has tackled the most important issues in chemical education today and in the foreseeable future.” – Professor David Waddington, Emeritus Professor in Chemistry Education, University of York, United Kingdom




Scientific Perspectivism


Book Description

Many people assume that the claims of scientists are objective truths. But historians, sociologists, and philosophers of science have long argued that scientific claims reflect the particular historical, cultural, and social context in which those claims were made. The nature of scientific knowledge is not absolute because it is influenced by the practice and perspective of human agents. Scientific Perspectivism argues that the acts of observing and theorizing are both perspectival, and this nature makes scientific knowledge contingent, as Thomas Kuhn theorized forty years ago. Using the example of color vision in humans to illustrate how his theory of “perspectivism” works, Ronald N. Giere argues that colors do not actually exist in objects; rather, color is the result of an interaction between aspects of the world and the human visual system. Giere extends this argument into a general interpretation of human perception and, more controversially, to scientific observation, conjecturing that the output of scientific instruments is perspectival. Furthermore, complex scientific principles—such as Maxwell’s equations describing the behavior of both the electric and magnetic fields—make no claims about the world, but models based on those principles can be used to make claims about specific aspects of the world. Offering a solution to the most contentious debate in the philosophy of science over the past thirty years, Scientific Perspectivism will be of interest to anyone involved in the study of science.