Low-Power Cmos Vlsi Circuit Design


Book Description

This is the first book devoted to low power circuit design, and its authors have been among the first to publish papers in this area.· Low-Power CMOS VLSI Design· Physics of Power Dissipation in CMOS FET Devices· Power Estimation· Synthesis for Low Power· Design and Test of Low-Voltage CMOS Circuits· Low-Power Static Ram Architectures· Low-Energy Computing Using Energy Recovery Techniques· Software Design for Low Power







Theory of CMOS Digital Circuits and Circuit Failures


Book Description

CMOS chips are becoming increasingly important in computer circuitry. They have been widely used during the past decade, and they will continue to grow in popularity in those application areas that demand high performance. Challenging the prevailing opinion that circuit simulation can reveal all problems in CMOS circuits, Masakazu Shoji maintains that simulation cannot completely remove the often costly errors that occur in circuit design. To address the failure modes of these circuits more fully, he presents a new approach to CMOS circuit design based on his systematizing of circuit design error and his unique theory of CMOS digital circuit operation. In analyzing CMOS digital circuits, the author focuses not on effects originating from the characteristics of the device (MOSFET) but on those arising from their connection. This emphasis allows him to formulate a powerful but ultimately simple theory explaining the effects of connectivity by using a concept of the states of the circuits, called microstates. Shoji introduces microstate sequence diagrams that describe the state changes (or the circuit connectivity changes), and he uses his microstate theory to analyze many of the conventional CMOS digital circuits. These analyses are practically all in closed-form, and they provide easy physical interpretation of the circuit's working mechanisms, the parametric dependence of performance, and the circuit's failure modes. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.







AI Techniques for Reliability Prediction for Electronic Components


Book Description

In the industry of manufacturing and design, one major constraint has been enhancing operating performance using less time. As technology continues to advance, manufacturers are looking for better methods in predicting the condition and residual lifetime of electronic devices in order to save repair costs and their reputation. Intelligent systems are a solution for predicting the reliability of these components; however, there is a lack of research on the advancements of this smart technology within the manufacturing industry. AI Techniques for Reliability Prediction for Electronic Components provides emerging research exploring the theoretical and practical aspects of prediction methods using artificial intelligence and machine learning in the manufacturing field. Featuring coverage on a broad range of topics such as data collection, fault tolerance, and health prognostics, this book is ideally designed for reliability engineers, electronic engineers, researchers, scientists, students, and faculty members seeking current research on the advancement of reliability analysis using AI.




Algorithms and Data Structures


Book Description

The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.







Performance Optimization Techniques in Analog, Mixed-Signal, and Radio-Frequency Circuit Design


Book Description

Improving the performance of existing technologies has always been a focal practice in the development of computational systems. However, as circuitry is becoming more complex, conventional techniques are becoming outdated and new research methodologies are being implemented by designers. Performance Optimization Techniques in Analog, Mix-Signal, and Radio-Frequency Circuit Design features recent advances in the engineering of integrated systems with prominence placed on methods for maximizing the functionality of these systems. This book emphasizes prospective trends in the field and is an essential reference source for researchers, practitioners, engineers, and technology designers interested in emerging research and techniques in the performance optimization of different circuit designs.




Distributed Computing and Optimization Techniques


Book Description

This book introduces research presented at the International Conference on Distributed Computing and Optimization Techniques (ICDCOT–2021), a two-day conference, where researchers, engineers, and academicians from all over the world came together to share their experiences and findings on all aspects of distributed computing and its applications in diverse areas. The book includes papers on distributed computing, intelligent system, optimization method, mathematical modeling, fuzzy logic, neural networks, grid computing, load balancing, communication. It will be a valuable resource for students, academics, and practitioners in the industry working on distributed computing.




Design and Modeling of Low Power VLSI Systems


Book Description

Very Large Scale Integration (VLSI) Systems refer to the latest development in computer microchips which are created by integrating hundreds of thousands of transistors into one chip. Emerging research in this area has the potential to uncover further applications for VSLI technologies in addition to system advancements. Design and Modeling of Low Power VLSI Systems analyzes various traditional and modern low power techniques for integrated circuit design in addition to the limiting factors of existing techniques and methods for optimization. Through a research-based discussion of the technicalities involved in the VLSI hardware development process cycle, this book is a useful resource for researchers, engineers, and graduate-level students in computer science and engineering.