3D Reconstruction


Book Description

Three-dimensional (3D) reconstruction is the process of capturing the shape and appearance of real objects using computer vision and computer graphics. In this book, the authors present topical research in the study of the methods, applications and challenges of 3D reconstruction. Topics include 3D medical reconstruction and case studies; 3D reconstruction of coronary anatomy using invasive imaging modalities; recent advances in eel spectroscopic tomography; stereoscopic Schlieren/shadowgraph 3D reconstruction techniques; three-dimensional refractive index imaging of cells to study light scattering properties of cells and tissue; 3D imaging of material properties by combination of scanning probe microscope and ultramicrotome; 3D reconstruction and its application for maxillofacial surgery training; the automated systems of processing of the fragmented material at archaeological and craniology 3D reconstruction; three-dimensional reconstruction of an acinus for numerical and experimental studies; large scene reconstruction based on ToF cameras; and the structure and motion factorisation of non-rigid objects.




3D Reconstruction


Book Description

The study of three-dimensional reconstruction of objects and scenes has been and remains now a widely researched topic. It has been investigated for many applications, for instance, video game development, animation, movies, virtual reality, teleoperating surgery, among other engineering-related applications. In this book, Chapter One reviews preoperative planning and intraoperative navigation based on 3D modeling for retroperitoneal procedures. Chapter Two discusses fringe pattern analysis using phase shifting techniques applied to solid digitalization in Advanced RISC Machine (ARM) architecture. Chapter Three describes the steps for 3D digitalization using a Fourier Transform Profilometry (FTP). Chapter Four compares different wavelet transform for its use in 3D reconstruction.




Electron Tomography


Book Description

This definitive work provides a comprehensive treatment of the mathematical background and working methods of three-dimensional reconstruction from tilt series. Special emphasis is placed on the problems presented by limitations of data collection in the transmission electron microscope. The book, extensively revised and updated, takes the reader from biological specimen preparation to three-dimensional images of the cell and its components.




Computational Methods for Three-Dimensional Microscopy Reconstruction


Book Description

Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology. Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.




Endoscopic Sinus Surgery


Book Description

Winner of the prestigious First Prize in ENT in 2005 from the British Medical Association (first edition)The second edition of this operative manual provides expanded coverage of the complex anatomy and the current surgical approaches to the paranasal sinuses and skull base. It provides practical, step-by-step instruction on using CT scans to reconstruct three-dimensional images of surgical anatomy, enabling the surgeon to develop detailed surgical plans for each clinical situation. The accompanying DVD is greatly expanded from the first edition's CD-ROM, with 30 additional operative videos plus new problem-based exercises. The operative videos enable practitioners to visualize the surgical concepts described and illustrated in the text. Case exercises provide the opportunity to apply knowledge learned to perform three-dimensional reconstructions--a valuable tool for self-assessment.Highlights of the second edition: Extensive presentation of all the anatomical variations and surgical approaches to the sinuses, parasinus regions, and posterior, middle, and anterior cranial fosse Straightforward outlines for approaching the frontal sinus and frontal recess, maxillary sinus trephination, dacryocystorhinostomy surgery, cerebrospinal fluid leak closure, orbital and optic nerve decompression, and Vidian neurectomy 830 diagrams, illustrations, and images demonstrating anatomy and surgical techniques Detailed coverage of endoscopic surgical approaches to tumors of the sinuses and in the intracranial cavity Discussion of the value and importance of axial CT for determining drainage pathways Essential for ENT surgeons, otolaryngologists, and residents, the book equips readers with all the information necessary for handling the range of anatomical variations that may be encountered and selecting the best approach for each.




Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine


Book Description

This book contains a selection of communications presented at the Third International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, held 4-6 July 1995 at Domaine d' Aix-Marlioz, Aix-Ies-Bains, France. This nice resort provided an inspiring environment to hold discussions and presentations on new and developing issues. Roentgen discovered X-ray radiation in 1895 and Becquerel found natural radioactivity in 1896 : a hundred years later, this conference was focused on the applications of such radiations to explore the human body. If the physics is now fully understood, 3D imaging techniques based on ionising radiations are still progressing. These techniques include 3D Radiology, 3D X-ray Computed Tomography (3D-CT), Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET). Radiology is dedicated to morphological imaging, using transmitted radiations from an external X-ray source, and nuclear medicine to functional imaging, using radiations emitted from an internal radioactive tracer. In both cases, new 3D tomographic systems will tend to use 2D detectors in order to improve the radiation detection efficiency. Taking a set of 2D acquisitions around the patient, 3D acquisitions are obtained. Then, fully 3D image reconstruction algorithms are required to recover the 3D image of the body from these projection measurements.




Computer Vision Technology for Food Quality Evaluation


Book Description

The first book in this rapidly expanding area, Computer Vision Technology for Food Quality Evaluation thoroughly discusses the latest advances in image processing and analysis. Computer vision has attracted much research and development attention in recent years and, as a result, significant scientific and technological advances have been made in quality inspection, classification and evaluation of a wide range of food and agricultural products. This unique work provides engineers and technologists working in research, development, and operations in the food industry with critical, comprehensive and readily accessible information on the art and science of computer vision technology. Undergraduate and postgraduate students and researchers in universities and research institutions will also find this an essential reference source.· Discusses novel technology for recognizing objects and extracting quantitative information from digital images in order to provide objective, rapid, non-contact and non-destructive quality evaluation. · International authors with both academic and professional credentials address in detail one aspect of the relevant technology per chapter making this ideal for textbook use· Divided into three parts, it begins with an outline of the fundamentals of the technology, followed by full coverage of the application in the most researched areas of meats and other foods, fruits, vegetables and grains.




Cryo-EM Part B: 3-D Reconstruction


Book Description

This volume is dedicated to a description of the instruments, samples, protocols, and analyses that belong to cryo-EM. It emphasizes the relatedness of the ideas, instrumentation, and methods underlying all cryo-EM approaches, which allow practitioners to easily move between them. Within each section, the articles are ordered according to the most common symmetry of the sample to which their methods are applied. - Includes time-tested core methods and new innovations applicable to any researcher - Methods included are useful to both established researchers and newcomers to the field - Relevant background and reference information given for procedures can be used as a guide




Computer Vision: Three-dimensional Reconstruction Techniques


Book Description

From facial recognition to self-driving cars, the applications of computer vision are vast and ever-expanding. Geometry plays a fundamental role in this discipline, providing the necessary mathematical framework to understand the underlying principles of how we perceive and interpret visual information in the world around us. This text explores the theories and computational techniques used to determine the geometric properties of solid objects through images. It covers the basic concepts and provides the necessary mathematical background for more advanced studies. The book is divided into clear and concise chapters covering a wide range of topics including image formation, camera models, feature detection and 3D reconstruction. Each chapter includes detailed explanations of the theory as well as practical examples to help the reader understand and apply the concepts presented. The book has been written with the intention of being used as a primary resource for students on university courses in computer vision, particularly final year undergraduate or postgraduate computer science or engineering courses. It is also useful for self-study and for those who, outside the academic field, find themselves applying computer vision to solve practical problems. The aim of the book is to strike a balance between the complexity of the theory and its practical applicability in terms of implementation. Rather than providing a comprehensive overview of the current state of the art, it offers a selection of specific methods with enough detail to enable the reader to implement them.




Single-particle Cryo-electron Microscopy


Book Description

The book reproduces 55 of more than 300 articles written by the author, representing milestones in methods development of single-particle cryo-EM as well as important results obtained by this technique in the study of biological macromolecules and their interactions. Importantly, neither symmetries nor ordered arrangements (as in two-dimensional crystals, helical assemblies, icosahedral viruses) are required. Although the biological applications are mainly in the area of ribosome structure and function, the elucidation of membrane channel structures and their activation and gating mechanisms are represented, as well. The book is introduced by a commentary that explains the original development of concepts, describes the contributions of the author's colleagues and students, and shows how challenges were overcome as the technique matured. Along the way, the ribosome served as an example for a macromolecule with intricate structure and conformational dynamics that pose challenges for three-dimensional visualization. Toward the end of the book -- bringing us to the present time -- molecular structures with near-atomic resolution are presented, and a novel type of computational analysis, manifold embedding, is introduced. Single-particle cryo-EM is currently revolutionizing structural biology, presenting a powerful alternative to X-ray crystallography as a means to solve the structure of biological macromolecules. The book presents in one place a number of articles containing key advances in mathematical and computational methods leading up to the present time. Secondly, the development of the technique over the years is reflected by ever-expanding discoveries in the field of ribosome structure and function. Thirdly, as all histories of ideas, the history of concepts pertaining to this new method of visualization is fascinating all in itself.