Teaching Chemistry in Higher Education


Book Description

Teaching Chemistry in Higher Education celebrates the contributions of Professor Tina Overton to the scholarship and practice of teaching and learning in chemistry education. Leading educators in United Kingdom, Ireland, and Australia—three countries where Tina has had enormous impact and influence—have contributed chapters on innovative approaches that are well-established in their own practice. Each chapter introduces the key education literature underpinning the approach being described. Rationales are discussed in the context of attributes and learning outcomes desirable in modern chemistry curricula. True to Tina’s personal philosophy, chapters offer pragmatic and useful guidance on the implementation of innovative teaching approaches, drawing from the authors’ experience of their own practice and evaluations of their implementation. Each chapter also offers key guidance points for implementation in readers’ own settings so as to maximise their adaptability. Chapters are supplemented with further reading and supplementary materials on the book’s website (overtonfestschrift.wordpress.com). Chapter topics include innovative approaches in facilitating group work, problem solving, context- and problem-based learning, embedding transferable skills, and laboratory education—all themes relating to the scholarly interests of Professor Tina Overton. About the Editors: Michael Seery is Professor of Chemistry Education at the University of Edinburgh, and is Editor of Chemistry Education Research and Practice. Claire Mc Donnell is Assistant Head of School of Chemical and Pharmaceutical Sciences at Technological University Dublin. Cover Art: Christopher Armstrong, University of Hull







Chemistry Education


Book Description

Winner of the CHOICE Outstanding Academic Title 2017 Award This comprehensive collection of top-level contributions provides a thorough review of the vibrant field of chemistry education. Highly-experienced chemistry professors and education experts cover the latest developments in chemistry learning and teaching, as well as the pivotal role of chemistry for shaping a more sustainable future. Adopting a practice-oriented approach, the current challenges and opportunities posed by chemistry education are critically discussed, highlighting the pitfalls that can occur in teaching chemistry and how to circumvent them. The main topics discussed include best practices, project-based education, blended learning and the role of technology, including e-learning, and science visualization. Hands-on recommendations on how to optimally implement innovative strategies of teaching chemistry at university and high-school levels make this book an essential resource for anybody interested in either teaching or learning chemistry more effectively, from experience chemistry professors to secondary school teachers, from educators with no formal training in didactics to frustrated chemistry students.




Emerging Technologies for STEAM Education


Book Description

This theory-to-practice guide offers leading-edge ideas for wide-scale curriculum reform in sciences, technology, engineering, the arts, and mathematics--the STEAM subjects. Chapters emphasize the critical importance of current and emerging digital technologies in bringing STEM education up to speed and implementing changes to curricula at the classroom level. Of particular interest are the diverse ways of integrating the liberal arts into STEM course content in mutually reshaping humanities education and scientific education. This framework and its many instructive examples are geared to ensure that both educators and students can become innovative thinkers and effective problem-solvers in a knowledge-based society. Included in the coverage: Reconceptualizing a college science learning experience in the new digital era. Using mobile devices to support formal, informal, and semi-formal learning. Change of attitudes, self-concept, and team dynamics in engineering education. The language arts as foundational for science, technology, engineering, art, and mathematics. Can K-12 math teachers train students to make valid logical reasoning? Moving forward with STEAM education research. Emerging Technologies for STEAM Education equips educators, education researchers, administrators, and education policymakers with curricular and pedagogical strategies for making STEAM education the bedrock of accessible, relevant learning in keeping with today's digital advances.




Integrating Green and Sustainable Chemistry Principles into Education


Book Description

Integrating Green and Sustainable Chemistry Principles into Education draws on the knowledge and experience of scientists and educators already working on how to encourage green chemistry integration in their teaching, both within and outside of academia. It highlights current developments in the field and outlines real examples of green chemistry education in practice, reviewing initiatives and approaches that have already proven effective. By considering both current successes and existing barriers that must be overcome to ensure sustainability becomes part of the fabric of chemistry education, the book's authors hope to drive collaboration between disciplines and help lay the foundations for a sustainable future. - Draws on the knowledge and expertise of scientists and educators already working to encourage green chemistry integration in their teaching, both within and outside of academia - Highlights current developments in the field and outlines real examples of green chemistry education in practice, reviewing initiatives and approaches that have already proven effective - Considers both current successes and existing barriers that must be overcome to ensure sustainability




STEM Integration in K-12 Education


Book Description

STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.




Relevant Chemistry Education


Book Description

This book is aimed at chemistry teachers, teacher educators, chemistry education researchers, and all those who are interested in increasing the relevance of chemistry teaching and learning as well as students' perception of it. The book consists of 20 chapters. Each chapter focuses on a certain issue related to the relevance of chemistry education. These chapters are based on a recently suggested model of the relevance of science education, encompassing individual, societal, and vocational relevance, its present and future implications, as well as its intrinsic and extrinsic aspects. “Two highly distinguished chemical educators, Ingo Eilks and AviHofstein, have brought together 40 internationally renowned colleagues from 16 countries to offer an authoritative view of chemistry teaching today. Between them, the authors, in 20 chapters, give an exceptional description of the current state of chemical education and signpost the future in both research and in the classroom. There is special emphasis on the many attempts to enthuse students with an understanding of the central science, chemistry, which will be helped by having an appreciation of the role of the science in today’s world. Themes which transcend all education such as collaborative work, communication skills, attitudes, inquiry learning and teaching, and problem solving are covered in detail and used in the context of teaching modern chemistry. The book is divided into four parts which describe the individual, the societal, the vocational and economic, and the non-formal dimensions and the editors bring all the disparate leads into a coherent narrative, that will be highly satisfying to experienced and new researchers and to teachers with the daunting task of teaching such an intellectually demanding subject. Just a brief glance at the index and the references will convince anyone interested in chemical education that this book is well worth studying; it is scholarly and readable and has tackled the most important issues in chemical education today and in the foreseeable future.” – Professor David Waddington, Emeritus Professor in Chemistry Education, University of York, United Kingdom




Green Chemistry Education


Book Description

Green Chemistry has brought about dramatic changes in the teaching of chemistry that have resulted in increased student excitement for the subject of chemistry, new lecture materials, new laboratory experiments, and a world-wide community of Green Chemistry teachers. This book features the cutting edge of this advance in the teaching of chemistry.




Process Oriented Guided Inquiry Learning (POGIL)


Book Description

POGIL is a student-centered, group learning pedagogy based on current learning theory. This volume describes POGIL's theoretical basis, its implementations in diverse environments, and evaluation of student outcomes.