Cellulose Acetate


Book Description

Cellulose Acetate: Properties, Uses and Preparation presents data on thermodynamic characteristics (heat capacity, enthalpy, entropy, and Gibbs function) from 4 to 580 K cellulose acetates and cellulose nitrates, as well as the major plasticizers for these polymers, the temperatures of their relaxation and phase transitions, the effect of plasticizers on these characteristics of cellulose acetate and cellulose nitrate and the solubility of plasticizers in polymers. Cellulose diacetate has been used in the design of sorption matrices for the fluorescent analysis of polyaromatic and heterocyclic compounds. Thus, the physicochemical properties of cellulose diacetate solutions in a binary acetone-water solvent were analyzed along with the morphological, surface-energy, physicochemical and physicomechanical characteristics of film matrices in comparison with fiber ones. Additionally, the authors examine how the growth of CO2 emissions efforts led to the necessity for green material solutions that fit into a sustainable development policy and low environmental impact. The major barriers to produce cellulose-based products from agricultural residues are the heterogeneity of the raw material, the experimental conditions reproducibility, the heterogeneous phase of the synthesis reaction, the difficulty of purification, the effluent disposal, and the control of the product quality. In the closing study, the authors provide a comprehensive review of electrospun nanofibres from different types of polymers with synthesized montmorillonite clays. Loading activated natural bentonite clay into any type of polymer can improve the adsorption property of electrospun nanofibres, but the bentonite clay must be well dispersed, suspended and loaded to achieve any benefit. This study may pave the way for further use of electrospun nanofibres loaded with clay in a wide variety of environmental and medical applications.







Cellulose Derivatives


Book Description

This book summarizes recent progress in cellulose chemistry. The last 10 years have witnessed important developments, because sustainability is a major concern. Biodegradable cellulose derivatives, in particular esters and ethers, are employed on a large scale. The recent developments in cellulose chemistry include unconventional methods for the synthesis of derivatives, introduction of novel solvents, e.g. ionic liquids, novel approaches to regioselective derivatization of cellulose, preparation of nano-particles and nano-composites for specific applications. These new developments are discussed comprehensively. This book is aimed at researchers and professionals working on cellulose and its derivatives. It fills an important gap in teaching, because most organic chemistry textbooks concentrate on the relatively simple chemistry of mono- and disaccharides. The chemistry and, more importantly, the applications of cellulose are only concisely mentioned.




Bio-Based Plastics


Book Description

The field of bio-based plastics has developed significantly in the last 10 years and there is increasing pressure on industries to shift existing materials production from petrochemicals to renewables. Bio-based Plastics presents an up-to-date overview of the basic and applied aspects of bioplastics, focusing primarily on thermoplastic polymers for material use. Emphasizing materials currently in use or with significant potential for future applications, this book looks at the most important biopolymer classes such as polysaccharides, lignin, proteins and polyhydroxyalkanoates as raw materials for bio-based plastics, as well as materials derived from bio-based monomers like lipids, poly(lactic acid), polyesters, polyamides and polyolefines. Detailed consideration is also given to the market and availability of renewable raw materials, the importance of bio-based content and the aspect of biodegradability. Topics covered include: Starch Cellulose and cellulose acetate Materials based on chitin and chitosan Lignin matrix composites from natural resources Polyhydroxyalkanoates Poly(lactic acid) Polyesters, Polyamides and Polyolefins from biomass derived monomers Protein-based plastics Bio-based Plastics is a valuable resource for academic and industrial researchers who are interested in new materials, renewable resources, sustainability and polymerization technology. It will also prove useful for advanced students interested in the development of bio-based products and materials, green and sustainable chemistry, polymer chemistry and materials science. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs







Cellulose Science and Technology


Book Description

This book addresses both classic concepts and state-of-the-art technologies surrounding cellulose science and technology. Integrating nanoscience and applications in materials, energy, biotechnology, and more, the book appeals broadly to students and researchers in chemistry, materials, energy, and environmental science. • Includes contributions from leading cellulose scientists worldwide, with five Anselm Payen Cellulose Award winners and two Hayashi Jisuke Cellulose Award winners • Deals with a highly applicable and timely topic, considering the current activities in the fields of bioeconomies, biorefineries, and biomass utilization • Maximizes readership by combining fundamental science and application development




Cellulose Ester Varnishes


Book Description