Principles of Modern Grinding Technology


Book Description

Principles of Modern Grinding Technology, Second Edition, provides insights into modern grinding technology based on the author's 40 years of research and experience in the field. It provides a concise treatment of the principles involved and shows how grinding precision and quality of results can be improved and costs reduced. Every aspect of the grinding process--techniques, machines and machine design, process control, and productivity optimization aspects--come under the searchlight. The new edition is an extensive revision and expansion of the first edition covering all the latest developments, including center-less grinding and ultra-precision grinding. Analyses of factors that influence grinding behavior are provided and applications are presented assisted by numerical examples for illustration. The new edition of this well-proven reference is an indispensible source for technicians, engineers, researchers, teachers, and students who are involved with grinding processes. - Well-proven source revised and expanded by undisputed authority in the field of grinding processes - Coverage of the latest developments, such as ultra-precision grinding machine developments and trends in high-speed grinding - Numerically worked examples give scale to essential process parameters - The book as a whole and in particular the treatment of center-less grinding is considered to be unchallenged by other books




Advances in Manufacturing Technology XV


Book Description

An overview of the latest advances in manufacturing In manufacturing, staying up to date with the newest technology has a direct impact on the bottom line. To this end, Advances in Manufacturing Technology XV provides an invaluable resource: papers presented at the 15th National Conference on Manufacturing Research, highlighting the latest findings and ongoing work of the world's leading labs. Showcasing innovation in efficiency, speed, safety, capability, and much more, these works represent the forefront of manufacturing today.




Grind Hardening Process


Book Description

This book presents the grind-hardening process and the main studies published since it was introduced in 1990s. The modelling of the various aspects of the process, such as the process forces, temperature profile developed, hardness profiles, residual stresses etc. are described in detail. The book is of interest to the research community working with mathematical modeling and optimization of manufacturing processes.




Grinding Technology


Book Description

Presenting a comprehensive treatment of grinding theory and its practical utilization, this edition focuses on grinding as a machining process using bonded abrasive grinding wheels as the cutting medium. It provides a description of abrasives and bonded abrasive cutting tools.




Advances in Grinding and Abrasive Technology XVI


Book Description

Selected, peer reviewed papers from the 16th Conference of Abrasive Technology in China, 7-10 August, 2011, Urumqi China




Modern Grinding Technology and Systems


Book Description

This specialist edition features key innovations in the science and engineering of new grinding processes, abrasives, tools, machines, and systems for a range of important industrial applications. Topics written by invited, internationally recognized authors review the advances and present results of research over a range of well-known grinding processes. A significant introductory review chapter explores innovations to achieve high productivity and very high precision in grinding. The reviewed applications range from grinding systems for very large lenses and reflectors, through to medium size grinding machine processes, and down to grinding very small components used in MEMS . Early research chapters explore the influence of grinding wheel topography on surface integrity and wheel wear. A novel chapter on abrasive processes also addresses the finishing of parts produced by additive manufacturing through mass finishing. Materials to be ground range from conventional engineering steels to aerospace materials, ceramics, and composites. The research findings highlight important new results for avoiding material sub-surface damage. The papers compiled in this book include references to many source publications which will be found invaluable for further research, such as new features introduced into control systems to improve process efficiency. The papers also reflect significant improvements and research findings relating to many aspects of grinding processes, including machines, materials, abrasives, wheel preparation, coolants, lubricants, and fluid delivery. Finally, a definitive chapter summarizes the optimal settings for high precision and the achievement of centerless grinding stability.




Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding


Book Description

In today’s modern world, the manufacturing industry is embracing an energy-efficient initiative and adopting green techniques. One aspect that has failed to adopt this scheme is flood grinding. Current flood grinding methods increase the treatment cost of grinding fluid and waste large quantities. In order to remain sustainable and efficient, in-depth research is necessary to study green grinding technologies that can ensure machining precision and surface quality of workpiece and reduce grinding fluid-induced environmental pollution. Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding provides emerging research exploring the theoretical and practical aspects of nanofluid lubrication and its application within grinding flow and green manufacturing. Featuring coverage on a broad range of topics such as airflow distribution, morphology analysis, and lubrication performance, this book is ideally designed for mechanical professionals, engineers, manufacturers, researchers, scientists, academicians, and students seeking current research on clean and low-carbon precision machining methods.




Modern Manufacturing Processes


Book Description

Provides an in-depth understanding of the fundamentals of a wide range of state-of-the-art materials manufacturing processes Modern manufacturing is at the core of industrial production from base materials to semi-finished goods and final products. Over the last decade, a variety of innovative methods have been developed that allow for manufacturing processes that are more versatile, less energy-consuming, and more environmentally friendly. This book provides readers with everything they need to know about the many manufacturing processes of today. Presented in three parts, Modern Manufacturing Processes starts by covering advanced manufacturing forming processes such as sheet forming, powder forming, and injection molding. The second part deals with thermal and energy-assisted manufacturing processes, including warm and hot hydrostamping. It also covers high speed forming (electromagnetic, electrohydraulic, and explosive forming). The third part reviews advanced material removal process like advanced grinding, electro-discharge machining, micro milling, and laser machining. It also looks at high speed and hard machining and examines advances in material modeling for manufacturing analysis and simulation. Offers a comprehensive overview of advanced materials manufacturing processes Provides practice-oriented information to help readers find the right manufacturing methods for the intended applications Highly relevant for material scientists and engineers in industry Modern Manufacturing Processes is an ideal book for practitioners and researchers in materials and mechanical engineering.




Thermodynamic Mechanism of Cryogenic Air Minimum Quantity Lubrication Grinding


Book Description

The achievement of high-efficiency and precise grinding of difficult-to-cut metals—like titanium alloys—is essential in the aerospace industry. However, the process often results in thermal damage to the workpiece surface, posing a significant technical challenge. While minimum quantity lubrication (MQL) has been used to aid titanium alloy grinding, its effectiveness is limited by insufficient heat dissipation and lubrication. As an alternative to normal temperature air for carrying micro-lubricants, Cryogenic air has shown promise in improving oil film heat transfer and lubrication performance in the grinding zone, thus reducing workpiece surface thermal damage. The experimental state of the technology demands more comprehensive studies on its effectiveness and on the underlying mechanisms. Thermodynamic Mechanism of Cryogenic Air Minimum Quantity Lubrication Grinding addresses these challenges by providing a theoretical framework for understanding and optimizing cryogenic air minimum quantity lubrication in grinding processes, particularly for titanium alloys. It explores the physical characteristics of lubricants under cryogenic conditions, the influence of low temperatures on atomization effects, droplet formation dynamics, and heat transfer mechanisms within the grinding zone. By establishing quantitative relationships between cryogenic air parameters and lubricant properties, the book lays a foundation for enhancing the cooling lubrication mechanism of cryogenic air MQL in grinding processes. Researchers, scholars, and graduate students in universities and research institutes focusing on machining will find this book invaluable, as it goes beyond the theoretical insights into practical solutions to enhance grinding efficiency and reduce thermal damage.




Thermodynamic Mechanism of MQL Grinding with Nano Bio-lubricant


Book Description

This book discusses the thermodynamic mechanism of MQL grinding with nano-biological lubricant from the force, heat, surface integrity, and micro-morphology. It makes up the fatal defect of the lack of heat transfer capability of traditional MQL grinding. The machining accuracy, surface quality, especially surface integrity of the workpiece, are significantly improved; at the same time, the service life of the grinding wheel is increased and the working environment is improved. The general scope of the book’s content is the effects of MQL grinding with nano-bio-lubricant on grinding force, thermal mechanism, and surface. It provides a new method of sustainable green grinding for environment-friendly, resource-saving, and energy-efficient utilization and solves the technical bottleneck of the insufficient capacity in MQL heat transfer.