TensorFlow 2.0 Quick Start Guide


Book Description

Perform supervised and unsupervised machine learning and learn advanced techniques such as training neural networks. Key FeaturesTrain your own models for effective prediction, using high-level Keras API Perform supervised and unsupervised machine learning and learn advanced techniques such as training neural networksGet acquainted with some new practices introduced in TensorFlow 2.0 AlphaBook Description TensorFlow is one of the most popular machine learning frameworks in Python. With this book, you will improve your knowledge of some of the latest TensorFlow features and will be able to perform supervised and unsupervised machine learning and also train neural networks. After giving you an overview of what's new in TensorFlow 2.0 Alpha, the book moves on to setting up your machine learning environment using the TensorFlow library. You will perform popular supervised machine learning tasks using techniques such as linear regression, logistic regression, and clustering. You will get familiar with unsupervised learning for autoencoder applications. The book will also show you how to train effective neural networks using straightforward examples in a variety of different domains. By the end of the book, you will have been exposed to a large variety of machine learning and neural network TensorFlow techniques. What you will learnUse tf.Keras for fast prototyping, building, and training deep learning neural network modelsEasily convert your TensorFlow 1.12 applications to TensorFlow 2.0-compatible filesUse TensorFlow to tackle traditional supervised and unsupervised machine learning applicationsUnderstand image recognition techniques using TensorFlowPerform neural style transfer for image hybridization using a neural networkCode a recurrent neural network in TensorFlow to perform text-style generationWho this book is for Data scientists, machine learning developers, and deep learning enthusiasts looking to quickly get started with TensorFlow 2 will find this book useful. Some Python programming experience with version 3.6 or later, along with a familiarity with Jupyter notebooks will be an added advantage. Exposure to machine learning and neural network techniques would also be helpful.




TensorFlow Reinforcement Learning Quick Start Guide


Book Description

Leverage the power of Tensorflow to Create powerful software agents that can self-learn to perform real-world tasks Key FeaturesExplore efficient Reinforcement Learning algorithms and code them using TensorFlow and PythonTrain Reinforcement Learning agents for problems, ranging from computer games to autonomous driving.Formulate and devise selective algorithms and techniques in your applications in no time.Book Description Advances in reinforcement learning algorithms have made it possible to use them for optimal control in several different industrial applications. With this book, you will apply Reinforcement Learning to a range of problems, from computer games to autonomous driving. The book starts by introducing you to essential Reinforcement Learning concepts such as agents, environments, rewards, and advantage functions. You will also master the distinctions between on-policy and off-policy algorithms, as well as model-free and model-based algorithms. You will also learn about several Reinforcement Learning algorithms, such as SARSA, Deep Q-Networks (DQN), Deep Deterministic Policy Gradients (DDPG), Asynchronous Advantage Actor-Critic (A3C), Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO). The book will also show you how to code these algorithms in TensorFlow and Python and apply them to solve computer games from OpenAI Gym. Finally, you will also learn how to train a car to drive autonomously in the Torcs racing car simulator. By the end of the book, you will be able to design, build, train, and evaluate feed-forward neural networks and convolutional neural networks. You will also have mastered coding state-of-the-art algorithms and also training agents for various control problems. What you will learnUnderstand the theory and concepts behind modern Reinforcement Learning algorithmsCode state-of-the-art Reinforcement Learning algorithms with discrete or continuous actionsDevelop Reinforcement Learning algorithms and apply them to training agents to play computer gamesExplore DQN, DDQN, and Dueling architectures to play Atari's Breakout using TensorFlowUse A3C to play CartPole and LunarLanderTrain an agent to drive a car autonomously in a simulatorWho this book is for Data scientists and AI developers who wish to quickly get started with training effective reinforcement learning models in TensorFlow will find this book very useful. Prior knowledge of machine learning and deep learning concepts (as well as exposure to Python programming) will be useful.




Hands-on Computer Vision with TensorFlow 2


Book Description

Computer vision is achieving a new frontier of capabilities in fields like health, automobile or robotics. This book explores TensorFlow 2, Google's open-source AI framework, and teaches how to leverage deep neural networks for visual tasks. It will help you acquire the insight and skills to be a part of the exciting advances in computer vision.




Recurrent Neural Networks with Python Quick Start Guide


Book Description

Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework. Key FeaturesTrain and deploy Recurrent Neural Networks using the popular TensorFlow libraryApply long short-term memory unitsExpand your skills in complex neural network and deep learning topicsBook Description Developers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling. Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood. After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field. What you will learnUse TensorFlow to build RNN modelsUse the correct RNN architecture for a particular machine learning taskCollect and clear the training data for your modelsUse the correct Python libraries for any task during the building phase of your modelOptimize your model for higher accuracyIdentify the differences between multiple models and how you can substitute themLearn the core deep learning fundamentals applicable to any machine learning modelWho this book is for This book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.




What's New in TensorFlow 2.0


Book Description

Get to grips with key structural changes in TensorFlow 2.0 Key FeaturesExplore TF Keras APIs and strategies to run GPUs, TPUs, and compatible APIs across the TensorFlow ecosystemLearn and implement best practices for building data ingestion pipelines using TF 2.0 APIsMigrate your existing code from TensorFlow 1.x to TensorFlow 2.0 seamlesslyBook Description TensorFlow is an end-to-end machine learning platform for experts as well as beginners, and its new version, TensorFlow 2.0 (TF 2.0), improves its simplicity and ease of use. This book will help you understand and utilize the latest TensorFlow features. What's New in TensorFlow 2.0 starts by focusing on advanced concepts such as the new TensorFlow Keras APIs, eager execution, and efficient distribution strategies that help you to run your machine learning models on multiple GPUs and TPUs. The book then takes you through the process of building data ingestion and training pipelines, and it provides recommendations and best practices for feeding data to models created using the new tf.keras API. You'll explore the process of building an inference pipeline using TF Serving and other multi-platform deployments before moving on to explore the newly released AIY, which is essentially do-it-yourself AI. This book delves into the core APIs to help you build unified convolutional and recurrent layers and use TensorBoard to visualize deep learning models using what-if analysis. By the end of the book, you'll have learned about compatibility between TF 2.0 and TF 1.x and be able to migrate to TF 2.0 smoothly. What you will learnImplement tf.keras APIs in TF 2.0 to build, train, and deploy production-grade modelsBuild models with Keras integration and eager executionExplore distribution strategies to run models on GPUs and TPUsPerform what-if analysis with TensorBoard across a variety of modelsDiscover Vision Kit, Voice Kit, and the Edge TPU for model deploymentsBuild complex input data pipelines for ingesting large training datasetsWho this book is for If you’re a data scientist, machine learning practitioner, deep learning researcher, or AI enthusiast who wants to migrate code to TensorFlow 2.0 and explore the latest features of TensorFlow 2.0, this book is for you. Prior experience with TensorFlow and Python programming is necessary to understand the concepts covered in the book.




Hands-On Computer Vision with TensorFlow 2


Book Description

A practical guide to building high performance systems for object detection, segmentation, video processing, smartphone applications, and more Key FeaturesDiscover how to build, train, and serve your own deep neural networks with TensorFlow 2 and KerasApply modern solutions to a wide range of applications such as object detection and video analysisLearn how to run your models on mobile devices and web pages and improve their performanceBook Description Computer vision solutions are becoming increasingly common, making their way into fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks. Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface. You'll then move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build generative adversarial networks (GANs) and variational autoencoders (VAEs) to create and edit images, and long short-term memory networks (LSTMs) to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts. By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0. What you will learnCreate your own neural networks from scratchClassify images with modern architectures including Inception and ResNetDetect and segment objects in images with YOLO, Mask R-CNN, and U-NetTackle problems faced when developing self-driving cars and facial emotion recognition systemsBoost your application's performance with transfer learning, GANs, and domain adaptationUse recurrent neural networks (RNNs) for video analysisOptimize and deploy your networks on mobile devices and in the browserWho this book is for If you're new to deep learning and have some background in Python programming and image processing, like reading/writing image files and editing pixels, this book is for you. Even if you're an expert curious about the new TensorFlow 2 features, you'll find this book useful. While some theoretical concepts require knowledge of algebra and calculus, the book covers concrete examples focused on practical applications such as visual recognition for self-driving cars and smartphone apps.




Mastering Machine Learning Algorithms


Book Description

Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key FeaturesUpdated to include new algorithms and techniquesCode updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applicationsBook Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learnUnderstand the characteristics of a machine learning algorithmImplement algorithms from supervised, semi-supervised, unsupervised, and RL domainsLearn how regression works in time-series analysis and risk predictionCreate, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANsWho this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.




Learn TensorFlow Enterprise


Book Description

Use TensorFlow Enterprise with other GCP services to improve the speed and efficiency of machine learning pipelines for reliable and stable enterprise-level deployment Key FeaturesBuild scalable, seamless, and enterprise-ready cloud-based machine learning applications using TensorFlow EnterpriseDiscover how to accelerate the machine learning development life cycle using enterprise-grade servicesManage Google’s cloud services to scale and optimize AI models in productionBook Description TensorFlow as a machine learning (ML) library has matured into a production-ready ecosystem. This beginner’s book uses practical examples to enable you to build and deploy TensorFlow models using optimal settings that ensure long-term support without having to worry about library deprecation or being left behind when it comes to bug fixes or workarounds. The book begins by showing you how to refine your TensorFlow project and set it up for enterprise-level deployment. You’ll then learn how to choose a future-proof version of TensorFlow. As you advance, you’ll find out how to build and deploy models in a robust and stable environment by following recommended practices made available in TensorFlow Enterprise. This book also teaches you how to manage your services better and enhance the performance and reliability of your artificial intelligence (AI) applications. You’ll discover how to use various enterprise-ready services to accelerate your ML and AI workflows on Google Cloud Platform (GCP). Finally, you’ll scale your ML models and handle heavy workloads across CPUs, GPUs, and Cloud TPUs. By the end of this TensorFlow book, you’ll have learned the patterns needed for TensorFlow Enterprise model development, data pipelines, training, and deployment. What you will learnDiscover how to set up a GCP TensorFlow Enterprise cloud instance and environmentHandle and format raw data that can be consumed by the TensorFlow model training processDevelop ML models and leverage prebuilt models using the TensorFlow Enterprise APIUse distributed training strategies and implement hyperparameter tuning to scale and improve your model training experimentsScale the training process by using GPU and TPU clustersAdopt the latest model optimization techniques and deployment methodologies to improve model efficiencyWho this book is for This book is for data scientists, machine learning developers or engineers, and cloud practitioners who want to learn and implement various services and features offered by TensorFlow Enterprise from scratch. Basic knowledge of the machine learning development process will be useful.




TensorFlow in Action


Book Description

Unlock the TensorFlow design secrets behind successful deep learning applications! Deep learning StackOverflow contributor Thushan Ganegedara teaches you the new features of TensorFlow 2 in this hands-on guide. In TensorFlow in Action you will learn: Fundamentals of TensorFlow Implementing deep learning networks Picking a high-level Keras API for model building with confidence Writing comprehensive end-to-end data pipelines Building models for computer vision and natural language processing Utilizing pretrained NLP models Recent algorithms including transformers, attention models, and ElMo In TensorFlow in Action, you'll dig into the newest version of Google's amazing TensorFlow framework as you learn to create incredible deep learning applications. Author Thushan Ganegedara uses quirky stories, practical examples, and behind-the-scenes explanations to demystify concepts otherwise trapped in dense academic papers. As you dive into modern deep learning techniques like transformer and attention models, you’ll benefit from the unique insights of a top StackOverflow contributor for deep learning and NLP. About the technology Google’s TensorFlow framework sits at the heart of modern deep learning. Boasting practical features like multi-GPU support, network data visualization, and easy production pipelines using TensorFlow Extended (TFX), TensorFlow provides the most efficient path to professional AI applications. And the Keras library, fully integrated into TensorFlow 2, makes it a snap to build and train even complex models for vision, language, and more. About the book TensorFlow in Action teaches you to construct, train, and deploy deep learning models using TensorFlow 2. In this practical tutorial, you’ll build reusable skill hands-on as you create production-ready applications such as a French-to-English translator and a neural network that can write fiction. You’ll appreciate the in-depth explanations that go from DL basics to advanced applications in NLP, image processing, and MLOps, complete with important details that you’ll return to reference over and over. What's inside Covers TensorFlow 2.9 Recent algorithms including transformers, attention models, and ElMo Build on pretrained models Writing end-to-end data pipelines with TFX About the reader For Python programmers with basic deep learning skills. About the author Thushan Ganegedara is a senior ML engineer at Canva and TensorFlow expert. He holds a PhD in machine learning from the University of Sydney. Table of Contents PART 1 FOUNDATIONS OF TENSORFLOW 2 AND DEEP LEARNING 1 The amazing world of TensorFlow 2 TensorFlow 2 3 Keras and data retrieval in TensorFlow 2 4 Dipping toes in deep learning 5 State-of-the-art in deep learning: Transformers PART 2 LOOK MA, NO HANDS! DEEP NETWORKS IN THE REAL WORLD 6 Teaching machines to see: Image classification with CNNs 7 Teaching machines to see better: Improving CNNs and making them confess 8 Telling things apart: Image segmentation 9 Natural language processing with TensorFlow: Sentiment analysis 10 Natural language processing with TensorFlow: Language modeling PART 3 ADVANCED DEEP NETWORKS FOR COMPLEX PROBLEMS 11 Sequence-to-sequence learning: Part 1 12 Sequence-to-sequence learning: Part 2 13 Transformers 14 TensorBoard: Big brother of TensorFlow 15 TFX: MLOps and deploying models with TensorFlow




Machine Learning with Go Quick Start Guide


Book Description

This quick start guide will bring the readers to a basic level of understanding when it comes to the Machine Learning (ML) development lifecycle, will introduce Go ML libraries and then will exemplify common ML methods such as Classification, Regression, and Clustering Key FeaturesYour handy guide to building machine learning workflows in Go for real-world scenariosBuild predictive models using the popular supervised and unsupervised machine learning techniquesLearn all about deployment strategies and take your ML application from prototype to production readyBook Description Machine learning is an essential part of today's data-driven world and is extensively used across industries, including financial forecasting, robotics, and web technology. This book will teach you how to efficiently develop machine learning applications in Go. The book starts with an introduction to machine learning and its development process, explaining the types of problems that it aims to solve and the solutions it offers. It then covers setting up a frictionless Go development environment, including running Go interactively with Jupyter notebooks. Finally, common data processing techniques are introduced. The book then teaches the reader about supervised and unsupervised learning techniques through worked examples that include the implementation of evaluation metrics. These worked examples make use of the prominent open-source libraries GoML and Gonum. The book also teaches readers how to load a pre-trained model and use it to make predictions. It then moves on to the operational side of running machine learning applications: deployment, Continuous Integration, and helpful advice for effective logging and monitoring. At the end of the book, readers will learn how to set up a machine learning project for success, formulating realistic success criteria and accurately translating business requirements into technical ones. What you will learnUnderstand the types of problem that machine learning solves, and the various approachesImport, pre-process, and explore data with Go to make it ready for machine learning algorithmsVisualize data with gonum/plot and GophernotesDiagnose common machine learning problems, such as overfitting and underfittingImplement supervised and unsupervised learning algorithms using Go librariesBuild a simple web service around a model and use it to make predictionsWho this book is for This book is for developers and data scientists with at least beginner-level knowledge of Go, and a vague idea of what types of problem Machine Learning aims to tackle. No advanced knowledge of Go (and no theoretical understanding of the math that underpins Machine Learning) is required.