Tephra Transport, Sedimentation and Hazards


Book Description

ABSTRACT: Tephra deposits are one of the possible outcomes of explosive volcanic eruptions and are the result of vertical settling of volcanic particles that have been expelled from the volcanic vent into the atmosphere, following magma fragmentation within the volcanic conduit. Tephra fallout represents the main volcanic hazard to populated areas and critical facilities. Therefore, it is crucial to better understand processes that lead to tephra transport, sedimentation and hazards. In this study, and based on detailed mapping and sampling of the tephra deposit of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador), I investigate tephra deposits through a variety of approaches, including empirical and analytical modeling of tephra thickness and grain size data to infer important eruption source parameters (e.g. column height, total mass ejected, total grain size distribution of the deposit). I also use a statistical approach (smoothed bootstrap with replacement method) to assess the uncertainty in the eruptive parameters. The 2450 BP Pululagua volcanic plume dynamics were also explored through detailed grain size analysis and 1D modeling of tephra accumulation. Finally, I investigate the influence of particle shape on tephra accumulation on the ground through a quantitative and comprehensive study of the shape of volcanic ash. As the global need for energy is expected to grow in the future, many future natural hazard studies will likely involve the assessment of volcanic hazards at critical facilities, including nuclear power plants. I address the potential hazards from tephra fallout, pyroclastic flows and lahars for the Bataan Nuclear Power Plant (Philippines) posed by three nearby volcanoes capable of impacting the site during an explosive eruption. I stress the need for good constraints (stratigraphic analysis and events dating) on past eruptive events to better quantify the probability of future events at potentially active volcanoes, the need for probabilistic approaches in such volcanic hazard assessments to address a broad range of potential eruption scenarios, and the importance of considering coupled volcanic processes (e.g. tephra fallout leading to lahars) in volcanic hazard assessments.




Understanding Open-Vent Volcanism and Related Hazards


Book Description

Special Paper 498 contains 12 new scientific papers, assembled as part of an NSF-sponsored workshop in 2011. The work highlights study of persistently active volcanoes and their hazards, mostly in Central America. Such volcanoes are termed "open vents" by volcanologists, and they offer the chance to study active processes. Insight into how volcanoes work and how hazards might be mitigated are the goals of the work. Overall, the volume presents insight into hazards infrastructure collaborations and development for geoscientists and students.




Monitoring and Mitigation of Volcano Hazards


Book Description

By the year 2000, the number of people at risk from volcanic hazards is likely to increase to around half a billion. Since 1980, significant advances have been made in volcano monitoring, the data from which provides the sole scientific basis for eruption prediction. Here, internationally renowned and highly experienced specialists provide 25 comprehensive articles covering a wide range of related topics: monitoring techniques and data analysis; modelling of monitoring data and eruptive phenomena; volcanic hazards and risk assessment; and volcanic emergency management. Selected case histories of recent volcanic disasters, such as Mount Pinatubo in the Philippines, demonstrate that effective communication - between scientists, civil authorities, the media and the population at risk - is essential to reducing the danger.




Hazards and Monitoring of Volcanic Activity 1


Book Description

The impact of natural disasters has become an important and ever-growing preoccupation for modern societies. Volcanic eruptions are particularly feared due to their devastating local, regional or global effects. Relevant scientific expertise that aims to evaluate the hazards of volcanic activity and monitor and predict eruptions has progressively developed since the start of the 20th century. The further development of fundamental knowledge and technological advances over this period have allowed scientific capabilities in this field to evolve. Hazards and Monitoring of Volcanic Activity groups a number of available techniques and approaches to render them easily accessible to teachers, researchers and students. This volume is dedicated to geological and historical approaches. The assessment of hazards and monitoring strategies is based primarily on knowledge of a volcano’s past behavior or that of similar volcanoes. The book presents the different types of volcanic hazards and various approaches to their mapping before providing a history of monitoring techniques.




Volcanic and Tectonic Hazard Assessment for Nuclear Facilities


Book Description

A summary of the current state-of-the-art in volcanic and tectonic hazard assessment of nuclear facilities for researchers, geologists and engineers.




Geomorphology and Natural Hazards


Book Description

Natural disasters are occasional intense events that disturb Earth's surface, but their impact can be felt long after. Hazard events such as earthquakes, volcanos, drought, and storms can trigger a catastrophic reshaping of the landscape through the erosion, transport, and deposition of different kinds of materials. Geomorphology and Natural Hazards: Understanding Landscape Change for Disaster Mitigation is a graduate level textbook that explores the natural hazards resulting from landscape change and shows how an Earth science perspective can inform hazard mitigation and disaster impact reduction. Volume highlights include: Definitions of hazards, risks, and disasters Impact of different natural hazards on Earth surface processes Geomorphologic insights for hazard assessment and risk mitigation Models for predicting natural hazards How human activities have altered 'natural' hazards Complementarity of geomorphology and engineering to manage threats




The Encyclopedia of Volcanoes


Book Description

Volcanoes are unquestionably one of the most spectacular and awe-inspiring features of the physical world. Our paradoxical fascination with them stems from their majestic beauty and powerful, sometimes deadly, destructiveness. Notwithstanding the tremendous advances in volcanology since ancient times, some of the mystery surrounding volcanic eruptions remains today. The Encyclopedia of Volcanoes summarizes our present knowledge of volcanoes; it provides a comprehensive source of information on the causes of volcanic eruptions and both the destructive and beneficial effects. The early chapters focus on the science of volcanism (melting of source rocks, ascent of magma, eruption processes, extraterrestrial volcanism, etc.). Later chapters discuss human interface with volcanoes, including the history of volcanology, geothermal energy resources, interaction with the oceans and atmosphere, health aspects of volcanism, mitigation of volcanic disasters, post-eruption ecology, and the impact of eruptions on organismal biodiversity. - Provides the only comprehensive reference work to cover all aspects of volcanology - Written by nearly 100 world experts in volcanology - Explores an integrated transition from the physical process of eruptions through hazards and risk, to the social face of volcanism, with an emphasis on how volcanoes have influenced and shaped society - Presents hundreds of color photographs, maps, charts and illustrations making this an aesthetically appealing reference - Glossary of 3,000 key terms with definitions of all key vocabulary items in the field is included




Forecasting and Planning for Volcanic Hazards, Risks, and Disasters


Book Description

Forecasting and Planning for Volcanic Hazards, Risks, and Disasters expands and complements the subject and themes in Volcanic Hazards, Risks and Disasters. Together, the two volumes represent an exhaustive compendium on volcanic hazards, risks, and disasters. Volume two presents a comprehensive picture of the volcano dynamics relevant for volcanic hazard forecasts. It also includes case studies of the associated risks and aspects like operational volcano observatory responses, communication before and across volcanic crises, emergency planning, social science aspects, and resilience from volcanic disasters. Forecasting and Planning for Volcanic Hazards, Risks, and Disasters takes a geoscientific approach to the topic while integrating the social and economic issues related to volcanoes and volcanic hazards and disasters. Features the expertise of top volcanologists, seismologists, geologists, and geophysicists Presents the latest research - including case studies of prominent volcanoes and volcanic hazards and disasters - on causality, economic and social impacts, and preparedness and mitigation Includes numerous tables, maps, diagrams, illustrations, and photographs to aid in grasping key concept




Geomorphological Hazards and Disaster Prevention


Book Description

A state-of-the-art assessment of how geomorphology contributes to the comprehension, mapping and modelling of hazardous Earth surface processes.




Tsunamiites - Features and Implications


Book Description

This book is an overview of the state-of-the art developments in sedimentology of tsunami-induced and tsunami-affected deposits, namely tsunamiites. It also highlights new problems and issues calling for additional investigation, and provides insight into the direction for future tsunamiite researches. Provides a comprehensive overview of developments in tsunamiites Investigates future trends and development needs Cutting edge research articles from leading experts aimed at researchers and scientists