$\textrm {C}^*$-Algebras and Finite-Dimensional Approximations


Book Description

$\textrm{C}*$-approximation theory has provided the foundation for many of the most important conceptual breakthroughs and applications of operator algebras. This book systematically studies (most of) the numerous types of approximation properties that have been important in recent years: nuclearity, exactness, quasidiagonality, local reflexivity, and others. Moreover, it contains user-friendly proofs, insofar as that is possible, of many fundamental results that were previously quite hard to extract from the literature. Indeed, perhaps the most important novelty of the first ten chapters is an earnest attempt to explain some fundamental, but difficult and technical, results as painlessly as possible. The latter half of the book presents related topics and applications--written with researchers and advanced, well-trained students in mind. The authors have tried to meet the needs both of students wishing to learn the basics of an important area of research as well as researchers who desire a fairly comprehensive reference for the theory and applications of $\textrm{C}*$-approximation theory.




Self-Similar Groups


Book Description

Self-similar groups (groups generated by automata) initially appeared as examples of groups that are easy to define but have exotic properties like nontrivial torsion, intermediate growth, etc. This book studies the self-similarity phenomenon in group theory and shows its intimate relationship with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. This connection is established through the central topics of the book, which are the notions of the iterated monodromy group and limit space. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. In particular, it is shown that Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties can appear not just as isolated examples, but as naturally defined iterated monodromy groups of rational functions. The book offers important, new mathematics that will open new avenues of research in group theory and dynamical systems. It is intended to be accessible to a wide readership of professional mathematicians.




Spectra and Pseudospectra


Book Description

Pure and applied mathematicians, physicists, scientists, and engineers use matrices and operators and their eigenvalues in quantum mechanics, fluid mechanics, structural analysis, acoustics, ecology, numerical analysis, and many other areas. However, in some applications the usual analysis based on eigenvalues fails. For example, eigenvalues are often ineffective for analyzing dynamical systems such as fluid flow, Markov chains, ecological models, and matrix iterations. That's where this book comes in. This is the authoritative work on nonnormal matrices and operators, written by the authorities who made them famous. Each of the sixty sections is written as a self-contained essay. Each document is a lavishly illustrated introductory survey of its topic, complete with beautiful numerical experiments and all the right references. The breadth of included topics and the numerous applications that provide links between fields will make this an essential reference in mathematics and related sciences.




Control Theory for Engineers


Book Description

Control Theory is at the heart of information and communication technologies of complex systems. It can contribute to meeting the energy and environmental challenges we are facing. The textbook is organized in the way an engineer classically proceeds to solve a control problem, that is, elaboration of a mathematical model capturing the process behavior, analysis of this model and design of a control to achieve the desired objectives. It is divided into three Parts. The first part of the text addresses modeling aspects through state space and input-output representations. The notion of the internal state of a system (for example mechanical, thermal or electrical), as well as its description using a finite number of variables, is also emphasized. The second part is devoted to the stability analysis of an equilibrium point. The authors present classical tools for stability analysis, such as linearization techniques and Lyapunov functions. Central to Control Theory are the notions of feedback and of closed-loop, and the third part of the textbook describes the linear control synthesis in a continuous and discrete-time framework and also in a probabilistic context. Quadratic optimization and Kalman filtering are presented, as well as the polynomial representation, a convenient approach to reject perturbations on the system without making the control law more complex. Throughout the text, different examples are developed, both in the chapters and in the exercises.




Algebraic Methods in General Rough Sets


Book Description

This unique collection of research papers offers a comprehensive and up-to-date guide to algebraic approaches to rough sets and reasoning with vagueness. It bridges important gaps, outlines intriguing future research directions, and connects algebraic approaches to rough sets with those for other forms of approximate reasoning. In addition, the book reworks algebraic approaches to axiomatic granularity. Given its scope, the book offers a valuable resource for researchers and teachers in the areas of rough sets and algebras of rough sets, algebraic logic, non classical logic, fuzzy sets, possibility theory, formal concept analysis, computational learning theory, category theory, and other formal approaches to vagueness and approximate reasoning. Consultants in AI and allied fields will also find the book to be of great practical value.




An Introduction to Group Rings


Book Description

to Group Rings by Cesar Polcino Milies Instituto de Matematica e Estatistica, Universidade de sao Paulo, sao Paulo, Brasil and Sudarshan K. Sehgal Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton. Canada SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. A c.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4020-0239-7 ISBN 978-94-010-0405-3 (eBook) DOI 10.1007/978-94-010-0405-3 Printed an acid-free paper AII Rights Reserved (c) 2002 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2002 Softcover reprint ofthe hardcover Ist edition 2002 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, inc1uding photocopying, recording Of by any information storage and retrieval system, without written permis sion from the copyright owner. Contents Preface ix 1 Groups 1 1.1 Basic Concepts . . . . . . . . . . . . 1 1.2 Homomorphisms and Factor Groups 10 1.3 Abelian Groups . 18 1.4 Group Actions, p-groups and Sylow Subgroups 21 1.5 Solvable and Nilpotent Groups 27 1.6 FC Groups .




Operator Algebras and Applications: Volume 1, Structure Theory; K-theory, Geometry and Topology


Book Description

These volumes form an authoritative statement of the current state of research in Operator Algebras. They consist of papers arising from a year-long symposium held at the University of Warwick. Contributors include many very well-known figures in the field.




New Structures for Physics


Book Description

This volume provides a series of tutorials on mathematical structures which recently have gained prominence in physics, ranging from quantum foundations, via quantum information, to quantum gravity. These include the theory of monoidal categories and corresponding graphical calculi, Girard’s linear logic, Scott domains, lambda calculus and corresponding logics for typing, topos theory, and more general process structures. Most of these structures are very prominent in computer science; the chapters here are tailored towards an audience of physicists.




An Operator Theory Problem Book


Book Description

This book is for third and fourth year university mathematics students (and Master students) as well as lecturers and tutors in mathematics and anyone who needs the basic facts on Operator Theory (e.g. Quantum Mechanists). The main setting for bounded linear operators here is a Hilbert space. There is, however, a generous part on General Functional Analysis (not too advanced though). There is also a chapter on Unbounded Closed Operators.The book is divided into two parts. The first part contains essential background on all of the covered topics with the sections: True or False Questions, Exercises, Tests and More Exercises. In the second part, readers may find answers and detailed solutions to the True or False Questions, Exercises and Tests.Another virtue of the book is the variety of the topics and the exercises and the way they are tackled. In many cases, the approaches are different from what is known in the literature. Also, some very recent results from research papers are included.




Topics in Banach Space Theory


Book Description

This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. From the reviews of the First Edition: "The authors of the book...succeeded admirably in creating a very helpful text, which contains essential topics with optimal proofs, while being reader friendly... It is also written in a lively manner, and its involved mathematical proofs are elucidated and illustrated by motivations, explanations and occasional historical comments... I strongly recommend to every graduate student who wants to get acquainted with this exciting part of functional analysis the instructive and pleasant reading of this book..."—Gilles Godefroy, Mathematical Reviews