Image Texture Analysis


Book Description

This useful textbook/reference presents an accessible primer on the fundamentals of image texture analysis, as well as an introduction to the K-views model for extracting and classifying image textures. Divided into three parts, the book opens with a review of existing models and algorithms for image texture analysis, before delving into the details of the K-views model. The work then concludes with a discussion of popular deep learning methods for image texture analysis. Topics and features: provides self-test exercises in every chapter; describes the basics of image texture, texture features, and image texture classification and segmentation; examines a selection of widely-used methods for measuring and extracting texture features, and various algorithms for texture classification; explains the concepts of dimensionality reduction and sparse representation; discusses view-based approaches to classifying images; introduces the template for the K-views algorithm, as well as a range of variants of this algorithm; reviews several neural network models for deep machine learning, and presents a specific focus on convolutional neural networks. This introductory text on image texture analysis is ideally suitable for senior undergraduate and first-year graduate students of computer science, who will benefit from the numerous clarifying examples provided throughout the work.




Handbook of Texture Analysis


Book Description

Texture analysis is one of the fundamental aspects of human vision by which we discriminate between surfaces and objects. In a similar manner, computer vision can take advantage of the cues provided by surface texture to distinguish and recognize objects. In computer vision, texture analysis may be used alone or in combination with other sensed features (e.g. color, shape, or motion) to perform the task of recognition. Either way, it is a feature of paramount importance and boasts a tremendous body of work in terms of both research and applications.Currently, the main approaches to texture analysis must be sought out through a variety of research papers. This collection of chapters brings together in one handy volume the major topics of importance, and categorizes the various techniques into comprehensible concepts. The methods covered will not only be relevant to those working in computer vision, but will also be of benefit to the computer graphics, psychophysics, and pattern recognition communities, academic or industrial.




Handbook Of Pattern Recognition And Computer Vision (2nd Edition)


Book Description

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.







Analysis and Interpretation of Range Images


Book Description

Computer vision researchers have been frustrated in their attempts to automatically derive depth information from conventional two-dimensional intensity images. Research on "shape from texture", "shape from shading", and "shape from focus" is still in a laboratory stage and had not seen much use in commercial machine vision systems. A range image or a depth map contains explicit information about the distance from the sensor to the object surfaces within the field of view in the scene. Information about "surface geometry" which is important for, say, three-dimensional object recognition is more easily extracted from "2 1/2 D" range images than from "2D" intensity images. As a result, both active sensors such as laser range finders and passive techniques such as multi-camera stereo vision are being increasingly utilized by vision researchers to solve a variety of problems. This book contains chapters written by distinguished computer vision researchers covering the following areas: Overview of 3D Vision Range Sensing Geometric Processing Object Recognition Navigation Inspection Multisensor Fusion A workshop report, written by the editors, also appears in the book. It summarizes the state of the art and proposes future research directions in range image sensing, processing, interpretation, and applications. The book also contains an extensive, up-to-date bibliography on the above topics. This book provides a unique perspective on the problem of three-dimensional sensing and processing; it is the only comprehensive collection of papers devoted to range images. Both academic researchers interested in research issues in 3D vision and industrial engineers in search of solutions to particular problems will find this a useful reference book.




Image Processing


Book Description

Image processing has been one of the most active areas of research in recent years. The techniques involved have found significant applications in areas as diverse as video-conferencing, image communication, robotics, geoscience, and medicine.; Providing a step-by-step guide to the basic principles underlying all image processing tasks, this book features numerous worked examples, guiding the reader through the intricacies of reaching the solutions.




Image Databases


Book Description

The explosive growth of multimedia data transmission has generated a critical need for efficient, high-capacity image databases, as well as powerful search engines to retrieve image data from them. This book brings together contributions by an international all-star team of innovators in the field who share their insights into all key aspects of image database and search engine construction. Readers get in-depth discussions of the entire range of crucial image database architecture, indexing and retrieval, transmission, display, and user interface issues. And, using examples from an array of disciplines, the authors present cutting-edge applications in medical imagery, multimedia communications, earth science, remote sensing, and other major application areas.




Biomedical Texture Analysis


Book Description

Biomedical Texture Analysis: Fundamentals, Applications, Tools and Challenges describes the fundamentals and applications of biomedical texture analysis (BTA) for precision medicine. It defines what biomedical textures (BTs) are and why they require specific image analysis design approaches when compared to more classical computer vision applications. The fundamental properties of BTs are given to highlight key aspects of texture operator design, providing a foundation for biomedical engineers to build the next generation of biomedical texture operators. Examples of novel texture operators are described and their ability to characterize BTs are demonstrated in a variety of applications in radiology and digital histopathology. Recent open-source software frameworks which enable the extraction, exploration and analysis of 2D and 3D texture-based imaging biomarkers are also presented. This book provides a thorough background on texture analysis for graduate students and biomedical engineers from both industry and academia who have basic image processing knowledge. Medical doctors and biologists with no background in image processing will also find available methods and software tools for analyzing textures in medical images. - Defines biomedical texture precisely and describe how it is different from general texture information considered in computer vision - Defines the general problem to translate 2D and 3D texture patterns from biomedical images to visually and biologically relevant measurements - Describes, using intuitive concepts, how the most popular biomedical texture analysis approaches (e.g., gray-level matrices, fractals, wavelets, deep convolutional neural networks) work, what they have in common, and how they are different - Identifies the strengths, weaknesses, and current challenges of existing methods including both handcrafted and learned representations, as well as deep learning. The goal is to establish foundations for building the next generation of biomedical texture operators - Showcases applications where biomedical texture analysis has succeeded and failed - Provides details on existing, freely available texture analysis software, helping experts in medicine or biology develop and test precise research hypothesis




Proceedings


Book Description




Image Analysis and Recognition


Book Description

ICIAR 2004, the International Conference on Image Analysis and Recognition, was the ?rst ICIAR conference, and was held in Porto, Portugal. ICIAR will be organized annually, and will alternate between Europe and North America. ICIAR 2005 will take place in Toronto, Ontario, Canada. The idea of o?ering these conferences came as a result of discussion between researchers in Portugal and Canada to encourage collaboration and exchange, mainly between these two countries, but also with the open participation of other countries, addressing recent advances in theory, methodology and applications. The response to the call for papers for ICIAR 2004 was very positive. From 316 full papers submitted, 210 were accepted (97 oral presentations, and 113 - sters). The review process was carried out by the Program Committee members and other reviewers; all are experts in various image analysis and recognition areas. Each paper was reviewed by at least two reviewing parties. The high q- lity of the papers in these proceedings is attributed ?rst to the authors, and second to the quality of the reviews provided by the experts. We would like to thank the authors for responding to our call, and we wholeheartedly thank the reviewers for their excellent work in such a short amount of time. We are espe- ally indebted to the Program Committee for their e?orts that allowed us to set up this publication. We were very pleased to be able to include in the conference, Prof. Murat KuntfromtheSwissFederalInstituteofTechnology,andProf. Mario ́ Figueiredo, oftheInstitutoSuperiorT ́ ecnico,inPortugal.