Neural Nets Wirn Vietri '95 - Proceedings Of The Vii Italian Workshop


Book Description

This volume contains the proceedings of the seventh Italian Workshop on Neural Nets WIRN VIETRI '95, organized by the International Institute for Advanced Scientific Studies 'E R Caianiello' (IIASS) and Società Italiana Reti Neuroniche (SIREN).The spectrum of contributors and participants covers the activity of Italian research in the field. The papers of the two invited speakers, M J Jordan ('Sigmoid Belief Networks') and E Oja ('Principal and Independent Component Analysis'), and the two reviews ('Fast Learning Algorithms for Feedforward NN' and 'ANN Ensembles: a Bayesian Standpoint') complete the highly qualified contents of the volume.




Advances in Neural Information Processing Systems 7


Book Description

November 28-December 1, 1994, Denver, Colorado NIPS is the longest running annual meeting devoted to Neural Information Processing Systems. Drawing on such disparate domains as neuroscience, cognitive science, computer science, statistics, mathematics, engineering, and theoretical physics, the papers collected in the proceedings of NIPS7 reflect the enduring scientific and practical merit of a broad-based, inclusive approach to neural information processing. The primary focus remains the study of a wide variety of learning algorithms and architectures, for both supervised and unsupervised learning. The 139 contributions are divided into eight parts: Cognitive Science, Neuroscience, Learning Theory, Algorithms and Architectures, Implementations, Speech and Signal Processing, Visual Processing, and Applications. Topics of special interest include the analysis of recurrent nets, connections to HMMs and the EM procedure, and reinforcement- learning algorithms and the relation to dynamic programming. On the theoretical front, progress is reported in the theory of generalization, regularization, combining multiple models, and active learning. Neuroscientific studies range from the large-scale systems such as visual cortex to single-cell electrotonic structure, and work in cognitive scientific is closely tied to underlying neural constraints. There are also many novel applications such as tokamak plasma control, Glove-Talk, and hand tracking, and a variety of hardware implementations, with particular focus on analog VLSI.




An Introduction to Neural Networks


Book Description

Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.




Parallel Problem Solving from Nature - PPSN VII


Book Description

We are proud to introduce the proceedings of the Seventh International C- ference on Parallel Problem Solving from Nature, PPSN VII, held in Granada, Spain, on 7–11 September 2002. PPSN VII was organized back-to-back with the Foundations of Genetic Algorithms (FOGA) conference, which took place in Torremolinos, Malaga, Spain, in the preceding week. ThePPSNseriesofconferencesstartedinDortmund,Germany[1].Fromthat pioneering meeting, the event has been held biennially, in Brussels, Belgium [2], Jerusalem, Israel [3], Berlin, Germany [4], Amsterdam, The Netherlands [5], and Paris, France [6]. During the Paris conference, several bids to host PPSN 2002 were put forward; it was decided that the conference would be held in Granada with Juan J. Merelo Guerv ́ os as General Chairman. The scienti?c content of the PPSN conference focuses on problem-solving paradigms gleaned from natural models, with an obvious emphasis on those that display an innate parallelism, such as evolutionary algorithms and ant-colony optimization algorithms. The majority of the papers, however, concentrate on evolutionary and hybrid algorithms, as is shown in the contents of this book and itspredecessors.Thiseditionoftheconferenceproceedingshasalargesectionon applications,betheytoclassicalproblemsortoreal-worldengineeringproblems, which shows how bioinspired algorithms are extending their use in the realms of business and enterprise.







Cellular Neural Networks And Their Applications: Procs Of The 7th Ieee Int'l Workshop


Book Description

This volume covers the fundamental theory of Cellular Neural Networks as well as their applications in various fields such as science and technology. It contains all 83 papers of the 7th International Workshop on Cellular Neural Networks and their Applications. The workshop follows a biennial series of six workshops consecutively hosted in Budapest (1990), Munich, Rome, Seville, London and Catania (2000).




Neural Information Processing: Research and Development


Book Description

The field of neural information processing has two main objects: investigation into the functioning of biological neural networks and use of artificial neural networks to sol ve real world problems. Even before the reincarnation of the field of artificial neural networks in mid nineteen eighties, researchers have attempted to explore the engineering of human brain function. After the reincarnation, we have seen an emergence of a large number of neural network models and their successful applications to solve real world problems. This volume presents a collection of recent research and developments in the field of neural information processing. The book is organized in three Parts, i.e., (1) architectures, (2) learning algorithms, and (3) applications. Artificial neural networks consist of simple processing elements called neurons, which are connected by weights. The number of neurons and how they are connected to each other defines the architecture of a particular neural network. Part 1 of the book has nine chapters, demonstrating some of recent neural network architectures derived either to mimic aspects of human brain function or applied in some real world problems. Muresan provides a simple neural network model, based on spiking neurons that make use of shunting inhibition, which is capable of resisting small scale changes of stimulus. Hoshino and Zheng simulate a neural network of the auditory cortex to investigate neural basis for encoding and perception of vowel sounds.




Elements of Artificial Neural Networks


Book Description

Elements of Artificial Neural Networks provides a clearly organized general introduction, focusing on a broad range of algorithms, for students and others who want to use neural networks rather than simply study them. The authors, who have been developing and team teaching the material in a one-semester course over the past six years, describe most of the basic neural network models (with several detailed solved examples) and discuss the rationale and advantages of the models, as well as their limitations. The approach is practical and open-minded and requires very little mathematical or technical background. Written from a computer science and statistics point of view, the text stresses links to contiguous fields and can easily serve as a first course for students in economics and management. The opening chapter sets the stage, presenting the basic concepts in a clear and objective way and tackling important -- yet rarely addressed -- questions related to the use of neural networks in practical situations. Subsequent chapters on supervised learning (single layer and multilayer networks), unsupervised learning, and associative models are structured around classes of problems to which networks can be applied. Applications are discussed along with the algorithms. A separate chapter takes up optimization methods. The most frequently used algorithms, such as backpropagation, are introduced early on, right after perceptrons, so that these can form the basis for initiating course projects. Algorithms published as late as 1995 are also included. All of the algorithms are presented using block-structured pseudo-code, and exercises are provided throughout. Software implementing many commonly used neural network algorithms is available at the book's website. Transparency masters, including abbreviated text and figures for the entire book, are available for instructors using the text.





Book Description




Artificial Intelligence: Methodology, Systems, and Applications


Book Description

This book constitutes the refereed proceedings of the 10th International Conference on Artificial Intelligence: Methodology, Systems, and Appliations, AIMSA 2002, held in Varna, Bulgaria in September 2002. The 26 revised full papers presented together with 2 invited papers were carefully reviewed and selected for inclusion in this book. The papers address a broad spectrum of topics in AI, including natural language processing, computational learning, Machine learning, AI planning, heuristics, neural information processing, adaptive systems, computational linguistics, multi-agent systems, AI logic, knowledge management, and information retrieval.