The Absolute Galois Group of a Semi-Local Field


Book Description

This book is devoted to the structure of the absolute Galois groups of certain algebraic extensions of the field of rational numbers. Its main result, a theorem proved by the authors and Florian Pop in 2012, describes the absolute Galois group of distinguished semi-local algebraic (and other) extensions of the rational numbers as free products of the free profinite group on countably many generators and local Galois groups. This is an instance of a positive answer to the generalized inverse problem of Galois theory. Adopting both an arithmetic and probabilistic approach, the book carefully sets out the preliminary material needed to prove the main theorem and its supporting results. In addition, it includes a description of Melnikov's construction of free products of profinite groups and, for the first time in book form, an account of a generalization of the theory of free products of profinite groups and their subgroups. The book will be of interest to researchers in field arithmetic, Galois theory and profinite groups.




The semi-simple zeta function of quaternionic Shimura varieties


Book Description

This monograph is concerned with the Shimura variety attached to a quaternion algebra over a totally real number field. For any place of good (or moderately bad) reduction, the corresponding (semi-simple) local zeta function is expressed in terms of (semi-simple) local L-functions attached to automorphic representations. In an appendix a conjecture of Langlands and Rapoport on the reduction of a Shimura variety in a very general case is restated in a slightly stronger form. The reader is expected to be familiar with the basic concepts of algebraic geometry, algebraic number theory and the theory of automorphic representation.




Model Theory of Fields


Book Description




Handbook of Algebra


Book Description

Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear dependence and discusses matroids. Section 1D focuses on fields, Galois Theory, and algebraic number theory. Section 1F tackles generalizations of fields and related objects. Section 2A focuses on category theory, including the topos theory and categorical structures. Section 2B discusses homological algebra, cohomology, and cohomological methods in algebra. Section 3A focuses on commutative rings and algebras. Finally, Section 3B focuses on associative rings and algebras. This book will be of interest to mathematicians, logicians, and computer scientists.




Topics in Galois Theory


Book Description

This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi




Recent Developments in the Inverse Galois Problem


Book Description

This book contains the refereed proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Recent Developments in the Inverse Galois Problem, held in July 1993 at the University of Washington, Seattle. A new review of Serre's Topics in Galois Theory serves as a starting point. The book describes the latest research on explicit presentation of the absolute Galois group of the rationals. Containing the first appearance of generalizations of modular curves, the book presents applications that demonstrate the full scope of the Inverse Galois Problem. In particular, the papers collected here show the ubiquity of the applications of the Inverse Galois Problem and its compelling significance. The book will serve as a guide to progress on the Inverse Galois Problem and as an aid in using this work in other areas of mathematics. This includes coding theory and other finite field applications. Group theory and a first course in algebraic curves are sufficient for understanding many papers in the volume. Graduate students will find this an excellent reference to current research, as it contains a list of problems appropriate for thesis material in arithmetic geometry, algebraic number theory, and group theory.




Noncommutative Geometry, Quantum Fields and Motives


Book Description

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.




Forty Years Of Algebraic Groups, Algebraic Geometry, And Representation Theory In China: In Memory Of The Centenary Year Of Xihua Cao's Birth


Book Description

Professor Xihua Cao (1920-2005) was a leading scholar at East China Normal University (ECNU) and a famous algebraist in China. His contribution to the Chinese academic circle is particularly the formation of a world-renowned 'ECNU School' in algebra, covering research areas include algebraic groups, quantum groups, algebraic geometry, Lie algebra, algebraic number theory, representation theory and other hot fields. In January 2020, in order to commemorate Professor Xihua Cao's centenary birthday, East China Normal University held a three-day academic conference. Scholars at home and abroad gave dedications or delivered lectures in the conference. This volume originates from the memorial conference, collecting the dedications of scholars, reminiscences of family members, and 16 academic articles written based on the lectures in the conference, covering a wide range of research hot topics in algebra. The book shows not only scholars' respect and memory for Professor Xihua Cao, but also the research achievements of Chinese scholars at home and abroad.




Arithmetic Geometry And Number Theory


Book Description

Mathematics is very much a part of our culture; and this invaluable collection serves the purpose of developing the branches involved, popularizing the existing theories and guiding our future explorations.More precisely, the goal is to bring the reader to the frontier of current developments in arithmetic geometry and number theory through the works of Deninger-Werner in vector bundles on curves over p-adic fields; of Jiang on local gamma factors in automorphic representations; of Weng on Deligne pairings and Takhtajan-Zograf metrics; of Yoshida on CM-periods; of Yu on transcendence of special values of zetas over finite fields. In addition, the lecture notes presented by Weng at the University of Toronto from October to November 2005 explain basic ideas and the reasons (not just the language and conclusions) behind Langlands' fundamental, yet notably difficult, works on the Eisenstein series and spectral decompositions.And finally, a brand new concept by Weng called the Geometric Arithmetic program that uses algebraic and/or analytic methods, based on geometric considerations, to develop the promising and yet to be cultivated land of global arithmetic that includes non-abelian Class Field Theory, Riemann Hypothesis and non-abelian Zeta and L Functions, etc.




On The Langlands Program: Endoscopy And Beyond


Book Description

This is a collection of lecture notes from the minicourses in the December 2018 Langlands Workshop: Endoscopy and Beyond. The volume combines seven introductory chapters on trace formulas, local Arthur packets, and beyond endoscopy. It aims to introduce the endoscopy classification via a basic example of the trace formula for SL(2), explore the more refined questions on the structure of Arthur packets, and look beyond endoscopy following the suggestions of Langlands, Braverman-Kazhdan, Ngo, and Altuğ. The book is a helpful reference for undergraduates, postgraduates, and researchers.