Advanced Materials and Techniques for Biosensors and Bioanalytical Applications


Book Description

Bioanalytical science and its technological subdomain, biosensors, are ever-evolving subjects, striving for rapid improvement in terms of performance and expanding the target range to meet the vast societal and market demands. The key performance factors for a biosensor that drive the research are selectivity, sensitivity, response time, accuracy, and reproducibility, with additional requirements of its portability and inexpensive nature. These performance factors are largely governed by the materials and techniques being used in these bioanalytical platforms. The selection of materials to meet these requirements is critical, as their interaction or involvement with the biological recognition elements should initiate or improve these performance factors. The technique discussed primarily applies to transducers involved in converting a biochemical signal to optical or electrical signals. Over the years, the emergence of novel materials and techniques has drastically improved the performance of these bioanalytical systems, enabling them to expand their analytical horizon. These advanced materials and techniques are central to modern bioanalytical and biosensor research. Advanced Materials and Techniques for Biosensors and Bioanalytical Applications provides a comprehensive review of the subject, including a knowledge platform for both academics and researchers. Considering biosensors as a central theme to this book, an outline on this subject with background principles has been included, with a scope of extending the utility of the book to coursework in graduate and postgraduate schools. Features: • Basic principles on different classes of biosensors, recent advances and applications • Smart materials for biosensors and other rapid, portable detection devices • Metal nanoparticles and nanocrystals for analytical applications • Carbon-based nanoparticles and quantum dots for sensing applications • Nanozymes as potential catalysts for sensing applications • Bioelectrochemiluminescence and photoelectrochemical-based biosensors • Paper electronics and paper-based biosensors • Microbial biosensors: artificial intelligence, genetic engineering, and synthetic biology • Biofuel cells as a signal transduction platform • FET-based biosensors, including ISFET and BioFET This book serves as a reference for scientific investigators and a textbook for a graduate-level course in biosensors and advanced bioanalytical techniques.




Medical Biosensors for Point of Care (POC) Applications


Book Description

Medical Biosensors for Point of Care (POC) Applications discusses advances in this important and emerging field which has the potential to transform patient diagnosis and care. Part 1 covers the fundamentals of medical biosensors for point-of-care applications. Chapters in part 2 go on to look at materials and fabrication of medical biosensors while the next part looks at different technologies and operational techniques. The final set of chapters provide an overview of the current applications of this technology. Traditionally medical diagnostics have been dependent on sophisticated technologies which only trained professionals were able to operate. Recent research has focused on creating point-of-care diagnostic tools. These biosensors are miniaturised, portable, and are designed to be used at the point-of-care by untrained individuals, providing real-time and remote health monitoring. - Provides essential knowledge for designers and manufacturers of biosensors for point-of-care applications - Provides comprehensive coverage of the fundamentals, materials, technologies, and applications of medical biosensors for point-of-care applications - Includes contributions from leading international researchers with extensive experience in developing medical biosensors - Discusses advances in this important and emerging field which has the potential to transform patient diagnosis and care




Advanced Materials and Techniques for Biosensors and Bioanalytical Applications


Book Description

Bioanalytical science and its technological subdomain, biosensors, are ever-evolving subjects, striving for rapid improvement in terms of performance and expanding the target range to meet the vast societal and market demands. The key performance factors for a biosensor that drive the research are selectivity, sensitivity, response time, accuracy, and reproducibility, with additional requirements of its portability and inexpensive nature. These performance factors are largely governed by the materials and techniques being used in these bioanalytical platforms. The selection of materials to meet these requirements is critical, as their interaction or involvement with the biological recognition elements should initiate or improve these performance factors. The technique discussed primarily applies to transducers involved in converting a biochemical signal to optical or electrical signals. Over the years, the emergence of novel materials and techniques has drastically improved the performance of these bioanalytical systems, enabling them to expand their analytical horizon. These advanced materials and techniques are central to modern bioanalytical and biosensor research. Advanced Materials and Techniques for Biosensors and Bioanalytical Applications provides a comprehensive review of the subject, including a knowledge platform for both academics and researchers. Considering biosensors as a central theme to this book, an outline on this subject with background principles has been included, with a scope of extending the utility of the book to coursework in graduate and postgraduate schools. Features: • Basic principles on different classes of biosensors, recent advances and applications • Smart materials for biosensors and other rapid, portable detection devices • Metal nanoparticles and nanocrystals for analytical applications • Carbon-based nanoparticles and quantum dots for sensing applications • Nanozymes as potential catalysts for sensing applications • Bioelectrochemiluminescence and photoelectrochemical-based biosensors • Paper electronics and paper-based biosensors • Microbial biosensors: artificial intelligence, genetic engineering, and synthetic biology • Biofuel cells as a signal transduction platform • FET-based biosensors, including ISFET and BioFET This book serves as a reference for scientific investigators and a textbook for a graduate-level course in biosensors and advanced bioanalytical techniques.







New Perspectives in Biosensors Technology and Applications


Book Description

A biosensor is a detecting device that combines a transducer with a biologically sensitive and selective component. Biosensors can measure compounds present in the environment, chemical processes, food and human body at low cost if compared with traditional analytical techniques. This book covers a wide range of aspects and issues related to biosensor technology, bringing together researchers from 12 different countries. The book consists of 20 chapters written by 69 authors and divided in three sections: Biosensors Technology and Materials, Biosensors for Health and Biosensors for Environment and Biosecurity.




Nanomaterials for Advanced Technologies


Book Description

This book presents experimental as well as simulation methodologies for analysis and development of nanostructures for introducing the desirable effects through modifications in the basic structure of select nanomaterials. The initial chapters in this book focus on exploring the basic aspects of nanomaterials, e.g., distinguishing features, synthesis, processing, characterization, simulation and application dimensions, or nanostructures that enable novel/enhanced properties or functions. The chapters also cover the size-dependent electronic, optical, and magnetic properties of nanomaterials in exposing the specific properties essential for applications in nanophotonics, nanoplasmonics, nanosystems (e.g., biological, medical, chemical, catalytic, energy, and environmental applications), and nanodevices (e.g., electronic, photonic, magnetic, imaging, diagnostic, and sensor applications). This book is a useful resource for students, researchers, and technologists in gathering recent knowledge on novel nanostructures and their use in different application areas.




Biosensors and Modern Biospecific Analytical Techniques


Book Description

Biosensors and Modern Biospecific Analytical Techniques further expands the Comprehensive Analytical Chemistry series' coverage of rapid analysis based on advanced technological developments. This 12-chapter volume summarizes the main developments in the biosensors field over the last 10 years. It provides a comprehensive study on the different types of biosensors, including DNA-based, enzymatic, optical, self-assembled monolayers and the third generation of biosensors. As well as many technological developments on bioanalytical microsystems and new materials for biosensors, antibody and immunoassay developments have a prominent place in the book.* Provides a comprehensive study on the different types of biosensors* Applications covered include environmental analysis, bioprocess monitoring and biomedicine* An indispensable resource for those working in analytical chemistry




Functionalized Nanomaterials for Biosensing and Bioelectronics Applications


Book Description

Functionalized Nanomaterials for Biosensing and Bioelectronics Applications: Trends and Challenges describes current and future opportunities for integrating the unique properties of two-dimensional nanomaterials with bioelectronic interfaces. Sections focus on background information and fundamental concepts, review the available functionalized nanomaterials and their properties, explore the integration of functionalized nanomaterials with bioelectronics, including available fabrication and characterization methods, electrical behavior at the interface, and design and synthesis guidelines, and review examples of microsystems where functionalized nanomaterials are being integrated with bioelectronics. This book is suitable for researchers and practitioners in academia and R&D working in materials science and engineering, analytical chemistry and related fields. - Introduces the most common functionalized nanomaterials and their morphologies, properties, and mechanisms for sensing applications - Reviews functionalization and fabrication methods and techniques for the integration of one- and two-dimensional materials for sensing applications - Addresses the most relevant applications of functionalized nanomaterials for biosensing and bioelectronics applications




Metal Oxides for Biomedical and Biosensor Applications


Book Description

Metal Oxides for Biomedical and Biosensor Applications gives an in-depth overview of the emerging research in the biomedical and biosensing applications of metal oxides, including optimization of their surface and bulk properties. Sections cover biomedical applications of metal oxides for use in cell cultures, antibacterial and antimicrobial treatments, dental applications, drug delivery, cancer therapy, immunotherapy, photothermal therapy, tissue engineering, and metal oxide-based biosensor development. As advanced and biofunctionalized nano/micro structured metal oxides are finding applications in microfluidics, optical sensors, electrochemical sensors, DNA-based biosensing, imaging, diagnosis and analysis, this book provides a comprehensive update on the topic. Additional sections cover research challenges, technology limitations, and future trends in metal oxides and their composites regarding their usage in biomedical applications. - Includes an overview of the important applications of metal oxides for biomedical and biosensing technologies - Addresses the relationship between material properties, such as structure, morphology, composition and performance - Reviews the design and fabrication strategies of metal oxides for use in medical and biosensing applications




Smart Biosensor Technology


Book Description

Based on the success of the first edition, this second edition continues to build upon fundamental principles of biosensor design and incorporates recent advances in intelligent materials and novel fabrication techniques for a broad range of real world applications. The book provides a multi-disciplinary focus to capture the ever-expanding field of biosensors. Smart Biosensor Technology, Second Edition includes contributions from leading specialists in a wide variety of fields with a common focus on smart biosensor design. With 21 chapters organized in five parts, this compendium covers the fundamentals of smart biosensor technology, important issues related to material design and selection, principles of biosensor design and fabrication, advances in bioelectronics, and a look at specific applications related to pathogen detection, toxicity monitoring, microfluidics and healthcare. Features Provides a solid background in the underlying principles of biosensor design and breakthrough technologies for creating more intelligent biosensors Focusses on material design and selection including cutting-edge developments in carbon nanotubes, polymer nanowires, and porous silicon Examines machine learning and introduces concepts such as DNA-based molecular computing for smart biosensor function Explores the principles of bioelectronics and nerve cell microelectrode arrays for creating novel transducers and physiological biosensors Devotes several chapters to biosensors developed to detect and monitor a variety of toxins and pathogens Offers expert opinions on the future directions, challenges and opportunities in the field