Book Description
The main object of this memoir is to describe and, in some cases, to establish, new systems of congruences for the algebraic parts of the leading terms of the expansions of [italic]L-series at [italic lowercase]s = 0. If these congruences hold, together with a conjecture of Stark which states (roughly) that the ratio of the leading term to the regulator is an algebraic integer, then the main conjecture is true. The greater part of the memoir is devoted to the study of these systems of congruences for certain infinite families of quaternion extensions [italic]N/[italic]K (that is, [capital Greek]Gamma quaternion order 8). It is shown that such extensions can be constructed with specified ramification, and that various unit and class groups are calculable. This permits the verification of the congruences, and the main conjecture can be established for one such family of extensions.