The Lefschetz Properties


Book Description

This is a monograph which collects basic techniques, major results and interesting applications of Lefschetz properties of Artinian algebras. The origin of the Lefschetz properties of Artinian algebras is the Hard Lefschetz Theorem, which is a major result in algebraic geometry. However, for the last two decades, numerous applications of the Lefschetz properties to other areas of mathematics have been found, as a result of which the theory of the Lefschetz properties is now of great interest in its own right. It also has ties to other areas, including combinatorics, algebraic geometry, algebraic topology, commutative algebra and representation theory. The connections between the Lefschetz property and other areas of mathematics are not only diverse, but sometimes quite surprising, e.g. its ties to the Schur-Weyl duality. This is the first book solely devoted to the Lefschetz properties and is the first attempt to treat those properties systematically.







Classic Works of the Dempster-Shafer Theory of Belief Functions


Book Description

This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.







Guide to Reprints


Book Description




Books In Print 2004-2005


Book Description




Introduction to Quantum Graphs


Book Description

A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.




A Book of Abstract Algebra


Book Description

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.




Graphs for Pattern Recognition


Book Description

This monograph deals with mathematical constructions that are foundational in such an important area of data mining as pattern recognition. By using combinatorial and graph theoretic techniques, a closer look is taken at infeasible systems of linear inequalities, whose generalized solutions act as building blocks of geometric decision rules for pattern recognition. Infeasible systems of linear inequalities prove to be a key object in pattern recognition problems described in geometric terms thanks to the committee method. Such infeasible systems of inequalities represent an important special subclass of infeasible systems of constraints with a monotonicity property – systems whose multi-indices of feasible subsystems form abstract simplicial complexes (independence systems), which are fundamental objects of combinatorial topology. The methods of data mining and machine learning discussed in this monograph form the foundation of technologies like big data and deep learning, which play a growing role in many areas of human-technology interaction and help to find solutions, better solutions and excellent solutions. Contents: Preface Pattern recognition, infeasible systems of linear inequalities, and graphs Infeasible monotone systems of constraints Complexes, (hyper)graphs, and inequality systems Polytopes, positive bases, and inequality systems Monotone Boolean functions, complexes, graphs, and inequality systems Inequality systems, committees, (hyper)graphs, and alternative covers Bibliography List of notation Index