Catalytic Antibodies


Book Description

This volume addresses fundamental questions concerning the immunological genesis of the catalytic activity in antibodies, its relationship with classical antigen binding activity, and the biochemical mechanisms involved in catalysis. The contents reflect three main challenges in the field, i.e. to delineate the biological functions of catalytic antibodies in autoimmune disease; to isolate therapy-grade antibody catalysts with sufficient specificity and turnover to permit rapid removal of microbial and tumor antigens; and to develop immunogens that recruit immature catalyst-producing B cells into the clonal selection pathway and induce adaptive improvements of the catalytic function. Well-edited and up-to-date, this book reviews the current knowledge in the field and explores ways by which natural and engineered catalytic activities can be harnessed for medical applications. It should therefore be of special interest to immunologists, biochemists, biotechnologists, rheumatologists and pathologists.




Antigen Binding Molecules: Antibodies and T-Cell Receptors


Book Description

Topics Covered Include: X-ray crystallography of ligands. Catalytic antibodies. Nature of the antigen. Antibody binding sites. Maturation of the immune response. Computational biochemistry of antibodies and T-cell receptors. Antigen-specific T-cell receptors and their reactions. Key Features * X-Ray Crystallography of Ligands * Catalytic Antibodies * Nature of the Antigen * Antibody Binding Sites * Maturtion of the Immune Response * Computational Biochemistry of Antibodies and * T-Cell Receptors * Antigen-Specific T-Cell Receptors and Their Reactions




Immunoassay


Book Description

Immunoassays are among the most powerful and sensitive technologies now available for patient diagnosis and monitoring. This book is an indispensable guide to information on the theory and practice of immunoassays. It discusses the scientific basis of these technologies in a logical, organized, and heuristic manner and provides protocols for specific assays. The contents of this unique book are balanced among theory, practical issues, quality control, automation, and subspecialty areas, making it ideal for health science students, laboratory scientists, and clinicians. - Presents up-to-date information - Provides extensive cross-referencing - Covers theory and practice in full detail - Written by leading authorities







Non-Natural Amino Acids


Book Description

By combining the tools of organic chemistry with those of physical biochemistry and cell biology, Non-Natural Amino Acids aims to provide fundamental insights into how proteins work within the context of complex biological systems of biomedical interest. The critically acclaimed laboratory standard for 40 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. With more than 400 volumes published, each Methods in Enzymology volume presents material that is relevant in today's labs -- truly an essential publication for researchers in all fields of life sciences. - Demonstrates how the tools and principles of chemistry combined with the molecules and processes of living cells can be combined to create molecules with new properties and functions found neither in nature nor in the test tube - Presents new insights into the molecular mechanisms of complex biological and chemical systems that can be gained by studying the structure and function of non-natural molecules - Provides a "one-stop shop" for tried and tested essential techniques, eliminating the need to wade through untested or unreliable methods




Antibody Drug Discovery


Book Description

Antibody-based therapeutics are a central driver of the success of biopharmaceuticals. The discovery technology of this field is isolated to a limited number of centers of excellence in industry and academia. The objective of this volume is to provide a series of guides to those evaluating and preparing to enter particular areas within the field. Each chapter is written with a historical perspective that sets into context the significance of the key developments, and with the provision of “points to consider” for the reader as a value-added feature of the volume. All contributors are experts in their fields and have played pivotal roles in the creation of the technology.







Activity-Based Protein Profiling


Book Description

This volume provides a collection of contemporary perspectives on using activity-based protein profiling (ABPP) for biological discoveries in protein science, microbiology, and immunology. A common theme throughout is the special utility of ABPP to interrogate protein function and small-molecule interactions on a global scale in native biological systems. Each chapter showcases distinct advantages of ABPP applied to diverse protein classes and biological systems. As such, the book offers readers valuable insights into the basic principles of ABPP technology and how to apply this approach to biological questions ranging from the study of post-translational modifications to targeting bacterial effectors in host-pathogen interactions.




Directed Evolution Library Creation


Book Description

Biological systems are very special substrates for engineering—uniquely the products of evolution, they are easily redesigned by similar approaches. A simple algorithm of iterative cycles of diversification and selection, evolution works at all scales, from single molecules to whole ecosystems. In the little more than a decade since the first reported applications of evolutionary design to enzyme engineering, directed evolution has matured to the point where it now represents the centerpiece of industrial biocatalyst development and is being practiced by thousands of academic and industrial scientists in com- nies and universities around the world. The appeal of directed evolution is easy to understand: it is conceptually straightforward, it can be practiced without any special instrumentation and, most important, it frequently yields useful solutions, many of which are totally unanticipated. Directed evolution has r- dered protein engineering readily accessible to a broad audience of scientists and engineers who wish to tailor a myriad of protein properties, including th- mal and solvent stability, enzyme selectivity, specific activity, protease s- ceptibility, allosteric control of protein function, ligand binding, transcriptional activation, and solubility. Furthermore, the range of applications has expanded to the engineering of more complex functions such as those performed by m- tiple proteins acting in concert (in biosynthetic pathways) or as part of mac- molecular complexes and biological networks.




Antibody Fc


Book Description

Antibody Fc is the first single text to synthesize the literature on the mechanisms underlying the dramatic variability of antibodies to influence the immune response. The book demonstrates the importance of the Fc domain, including protective mechanisms, effector cell types, genetic data, and variability in Fc domain function. This volume is a critical single-source reference for researchers in vaccine discovery, immunologists, microbiologists, oncologists and protein engineers as well as graduate students in immunology and vaccinology. Antibodies represent the correlate of protection for numerous vaccines and are the most rapidly growing class of drugs, with applications ranging from cancer and infectious disease to autoimmunity. Researchers have long understood the variable domain of antibodies, which are responsible for antigen recognition, and can provide protection by blocking the function of their target antigen. However, recent developments in our understanding of the protection mediated by antibodies have highlighted the critical nature of the antibody constant, or Fc domain, in the biological activity of antibodies. The Fc domain allows antibodies to link the adaptive and innate immune systems, providing specificity to a wide range of innate effector cells. In addition, they provide a feedback loop to regulate the character of the immune response via interactions with B cells and antigen-presenting cells. - Clarifies the different mechanisms of IgG activity at the level of the different model systems used, including human genetic, mouse, and in vitro - Covers the role of antibodies in cancer, infectious disease, and autoimmunity and in the setting of monoclonal antibody therapy as well as naturally raised antibodies - Color illustrations enhance explanations of the immune system