The Art of Causal Conjecture


Book Description

In The Art of Causal Conjecture, Glenn Shafer lays out a new mathematical and philosophical foundation for probability and uses it to explain concepts of causality used in statistics, artificial intelligence, and philosophy. The various disciplines that use causal reasoning differ in the relative weight they put on security and precision of knowledge as opposed to timeliness of action. The natural and social sciences seek high levels of certainty in the identification of causes and high levels of precision in the measurement of their effects. The practical sciences -- medicine, business, engineering, and artificial intelligence -- must act on causal conjectures based on more limited knowledge. Shafer's understanding of causality contributes to both of these uses of causal reasoning. His language for causal explanation can guide statistical investigation in the natural and social sciences, and it can also be used to formulate assumptions of causal uniformity needed for decision making in the practical sciences. Causal ideas permeate the use of probability and statistics in all branches of industry, commerce, government, and science. The Art of Causal Conjecture shows that causal ideas can be equally important in theory. It does not challenge the maxim that causation cannot be proven from statistics alone, but by bringing causal ideas into the foundations of probability, it allows causal conjectures to be more clearly quantified, debated, and confronted by statistical evidence.




Actual Causality


Book Description

Explores actual causality, and such related notions as degree of responsibility, degree of blame, and causal explanation. The goal is to arrive at a definition of causality that matches our natural language usage and is helpful, for example, to a jury deciding a legal case, a programmer looking for the line of code that cause some software to fail, or an economist trying to determine whether austerity caused a subsequent depression.




The Book of Why


Book Description

A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.




Game-Theoretic Foundations for Probability and Finance


Book Description

Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity premium, and portfolio theory. Game-Theoretic Foundations for Probability and Finance is a book of research. It is also a teaching resource. Each chapter is supplemented with carefully designed exercises and notes relating the new theory to its historical context. Praise from early readers “Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for prediction, statistics and mathematical finance without stochastic assumptions. The authors set out their theory in great detail, resulting in what is definitely one of the most important books on the foundations of probability to have appeared in the last few decades.” – Peter Grünwald, CWI and University of Leiden “Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for probability and for finance. They have included an account of the tremendous growth that has occurred since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to continuous-time finance. This new book will undoubtedly spur a better understanding of the foundations of these very important fields, and we should all be grateful to its authors.” – Ioannis Karatzas, Columbia University




Statistical Inference as Severe Testing


Book Description

Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.




Uncle Petros and Goldbach's Conjecture


Book Description

Uncle Petros is a family joke. An ageing recluse, he lives alone in a suburb of Athens, playing chess and tending to his garden. If you didn't know better, you'd surely think he was one of life's failures. But his young nephew suspects otherwise. For Uncle Petros, he discovers, was once a celebrated mathematician, brilliant and foolhardy enough to stake everything on solving a problem that had defied all attempts at proof for nearly three centuries - Goldbach's Conjecture. His quest brings him into contact with some of the century's greatest mathematicians, including the Indian prodigy Ramanujan and the young Alan Turing. But his struggle is lonely and single-minded, and by the end it has apparently destroyed his life. Until that is a final encounter with his nephew opens up to Petros, once more, the deep mysterious beauty of mathematics. Uncle Petros and Goldbach's Conjecture is an inspiring novel of intellectual adventure, proud genius, the exhilaration of pure mathematics - and the rivalry and antagonism which torment those who pursue impossible goals.




All of Statistics


Book Description

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.




The Science of Conjecture


Book Description

How did we make reliable predictions before Pascal and Fermat's discovery of the mathematics of probability in 1654? What methods in law, science, commerce, philosophy, and logic helped us to get at the truth in cases where certainty was not attainable? In The Science of Conjecture, James Franklin examines how judges, witch inquisitors, and juries evaluated evidence; how scientists weighed reasons for and against scientific theories; and how merchants counted shipwrecks to determine insurance rates. The Science of Conjecture provides a history of rational methods of dealing with uncertainty and explores the coming to consciousness of the human understanding of risk.




The Oxford Handbook of Causal Reasoning


Book Description

Causal reasoning is one of our most central cognitive competencies, enabling us to adapt to our world. Causal knowledge allows us to predict future events, or diagnose the causes of observed facts. We plan actions and solve problems using knowledge about cause-effect relations. Without our ability to discover and empirically test causal theories, we would not have made progress in various empirical sciences. The handbook brings together the leading researchers in the field of causal reasoning and offers state-of-the-art presentations of theories and research. It provides introductions of competing theories of causal reasoning, and discusses its role in various cognitive functions and domains. The final section presents research from neighboring fields.




Heuristics, Probability, and Casuality


Book Description

The field of Artificial Intelligence has changed a great deal since the 80s, and arguably no one has played a larger role in that change than Judea Pearl. Judea Pearl's work made probability the prevailing language of modern AI and, perhaps more significantly, it placed the elaboration of crisp and meaningful models, and of effective computational mechanisms, at the center of AI research. This book is a collection of articles in honor of Judea Pearl, written by close colleagues and former students. Its three main parts, heuristics, probabilistic reasoning, and causality, correspond to the titles of the three ground-breaking books authored by Judea, and are followed by a section of short reminiscences. In this volume, leading authors look at the state of the art in the fields of heuristic, probabilistic, and causal reasoning, in light of Judea's seminal contributors. The authors list include Blai Bonet, Eric Hansen, Robert Holte, Jonathan Schaeffer, Ariel Felner, Richard Korf, Austin Parker, Dana Nau, V. S. Subrahmanian, Hector Geffner, Ira Pohl, Adnan Darwiche, Thomas Dean, Rina Dechter, Bozhena Bidyuk, Robert Matescu, Emma Rollon, Michael I. Jordan, Michael Kearns, Daphne Koller, Brian Milch, Stuart Russell, Azaria Paz, David Poole, Ingrid Zukerman, Carlos Brito, Philip Dawid, Felix Elwert, Christopher Winship, Michael Gelfond, Nelson Rushton, Moises Goldszmidt, Sander Greenland, Joseph Y. Halpern, Christopher Hitchcock, David Heckerman, Ross Shachter, Vladimir Lifschitz, Thomas Richardson, James Robins, Yoav Shoham, Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman, Wolfgang Spohn, Jian Tian, Ilya Shpitser, Nils Nilsson, Edward T. Purcell, and David Spiegelhalter.