The Art of Hardware Architecture


Book Description

This book highlights the complex issues, tasks and skills that must be mastered by an IP designer, in order to design an optimized and robust digital circuit to solve a problem. The techniques and methodologies described can serve as a bridge between specifications that are known to the designer and RTL code that is final outcome, reducing significantly the time it takes to convert initial ideas and concepts into right-first-time silicon. Coverage focuses on real problems rather than theoretical concepts, with an emphasis on design techniques across various aspects of chip-design.




Architectural Hardware


Book Description

With the increased focus on building and renovation over the past decade, there has been a growing demand for hardware that is both beautiful and functional.




Parallel Computer Architecture


Book Description

This book outlines a set of issues that are critical to all of parallel architecture--communication latency, communication bandwidth, and coordination of cooperative work (across modern designs). It describes the set of techniques available in hardware and in software to address each issues and explore how the various techniques interact.




Designing Embedded Hardware


Book Description

Intelligent readers who want to build their own embedded computer systems-- installed in everything from cell phones to cars to handheld organizers to refrigerators-- will find this book to be the most in-depth, practical, and up-to-date guide on the market. Designing Embedded Hardware carefully steers between the practical and philosophical aspects, so developers can both create their own devices and gadgets and customize and extend off-the-shelf systems. There are hundreds of books to choose from if you need to learn programming, but only a few are available if you want to learn to create hardware. Designing Embedded Hardware provides software and hardware engineers with no prior experience in embedded systems with the necessary conceptual and design building blocks to understand the architectures of embedded systems. Written to provide the depth of coverage and real-world examples developers need, Designing Embedded Hardware also provides a road-map to the pitfalls and traps to avoid in designing embedded systems. Designing Embedded Hardware covers such essential topics as: The principles of developing computer hardware Core hardware designs Assembly language concepts Parallel I/O Analog-digital conversion Timers (internal and external) UART Serial Peripheral Interface Inter-Integrated Circuit Bus Controller Area Network (CAN) Data Converter Interface (DCI) Low-power operation This invaluable and eminently useful book gives you the practical tools and skills to develop, build, and program your own application-specific computers.




Hardware Design and Petri Nets


Book Description

Hardware Design and Petri Nets presents a summary of the state of the art in the applications of Petri nets to designing digital systems and circuits. The area of hardware design has traditionally been a fertile field for research in concurrency and Petri nets. Many new ideas about modelling and analysis of concurrent systems, and Petri nets in particular, originated in theory of asynchronous digital circuits. Similarly, the theory and practice of digital circuit design have always recognized Petri nets as a powerful and easy-to-understand modelling tool. The ever-growing demand in the electronic industry for design automation to build various types of computer-based systems creates many opportunities for Petri nets to establish their role of a formal backbone in future tools for constructing systems that are increasingly becoming distributed, concurrent and asynchronous. Petri nets have already proved very effective in supporting algorithms for solving key problems in synthesis of hardware control circuits. However, since the front end to any realistic design flow in the future is likely to rely on more pragmatic Hardware Description Languages (HDLs), such as VHDL and Verilog, it is crucial that Petri nets are well interfaced to such languages. Hardware Design and Petri Nets is divided into five parts, which cover aspects of behavioral modelling, analysis and verification, synthesis from Petri nets and STGs, design environments based on high-level Petri nets and HDLs, and finally performance analysis using Petri nets. Hardware Design and Petri Nets serves as an excellent reference source and may be used as a text for advanced courses on the subject.




Computer Organization and Design RISC-V Edition


Book Description

The new RISC-V Edition of Computer Organization and Design features the RISC-V open source instruction set architecture, the first open source architecture designed to be used in modern computing environments such as cloud computing, mobile devices, and other embedded systems. With the post-PC era now upon us, Computer Organization and Design moves forward to explore this generational change with examples, exercises, and material highlighting the emergence of mobile computing and the Cloud. Updated content featuring tablet computers, Cloud infrastructure, and the x86 (cloud computing) and ARM (mobile computing devices) architectures is included. An online companion Web site provides advanced content for further study, appendices, glossary, references, and recommended reading. - Features RISC-V, the first such architecture designed to be used in modern computing environments, such as cloud computing, mobile devices, and other embedded systems - Includes relevant examples, exercises, and material highlighting the emergence of mobile computing and the cloud




Modern Computer Architecture and Organization


Book Description

A no-nonsense, practical guide to current and future processor and computer architectures, enabling you to design computer systems and develop better software applications across a variety of domains Key Features Understand digital circuitry with the help of transistors, logic gates, and sequential logic Examine the architecture and instruction sets of x86, x64, ARM, and RISC-V processors Explore the architecture of modern devices such as the iPhone X and high-performance gaming PCs Book DescriptionAre you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.What you will learn Get to grips with transistor technology and digital circuit principles Discover the functional elements of computer processors Understand pipelining and superscalar execution Work with floating-point data formats Understand the purpose and operation of the supervisor mode Implement a complete RISC-V processor in a low-cost FPGA Explore the techniques used in virtual machine implementation Write a quantum computing program and run it on a quantum computer Who this book is for This book is for software developers, computer engineering students, system designers, reverse engineers, and anyone looking to understand the architecture and design principles underlying modern computer systems from tiny embedded devices to warehouse-size cloud server farms. A general understanding of computer processors is helpful but not required.




Multiprocessor System-on-Chip


Book Description

The purpose of this book is to evaluate strategies for future system design in multiprocessor system-on-chip (MPSoC) architectures. Both hardware design and integration of new development tools will be discussed. Novel trends in MPSoC design, combined with reconfigurable architectures are a main topic of concern. The main emphasis is on architectures, design-flow, tool-development, applications and system design.




Hardware and Software Support for Virtualization


Book Description

This book focuses on the core question of the necessary architectural support provided by hardware to efficiently run virtual machines, and of the corresponding design of the hypervisors that run them. Virtualization is still possible when the instruction set architecture lacks such support, but the hypervisor remains more complex and must rely on additional techniques. Despite the focus on architectural support in current architectures, some historical perspective is necessary to appropriately frame the problem. The first half of the book provides the historical perspective of the theoretical framework developed four decades ago by Popek and Goldberg. It also describes earlier systems that enabled virtualization despite the lack of architectural support in hardware. As is often the case, theory defines a necessary—but not sufficient—set of features, and modern architectures are the result of the combination of the theoretical framework with insights derived from practical systems. The second half of the book describes state-of-the-art support for virtualization in both x86-64 and ARM processors. This book includes an in-depth description of the CPU, memory, and I/O virtualization of these two processor architectures, as well as case studies on the Linux/KVM, VMware, and Xen hypervisors. It concludes with a performance comparison of virtualization on current-generation x86- and ARM-based systems across multiple hypervisors.




Computer Architecture


Book Description

In this remarkable book on computer design, long-known in the field and widely used in manuscript form, Gerrit A. Blaauw and Frederick P. Brooks, Jr. provide a definitive guide and reference for practicing computer architects and for students. The book complements Brooks' recently updated classic, The Mythical Man-Month, focusing here on the design of hardware and there on software, here on the content of computer architecture and there on the process of architecture design. The book's focus on architecture issues complements Blaauw's early work on implementation techniques. Having experienced most of the computer age, the authors draw heavily on their first-hand knowledge, emphasizing timeless insights and observations. Blaauw and Brooks first develop a conceptual framework for understanding computer architecture. They then describe not only what present architectural practice is, but how it came to be so. A major theme is the early divergence and the later reconvergence of computer architectures. They examine both innovations that survived and became part of the standard computer, and the many ideas that were explored in real machines but did not survive. In describing the discards, they also address why these ideas did not make it. The authors' goals are to analyze and systematize familiar design alternatives, and to introduce you to unfamiliar ones. They illuminate their discussion with detailed executable descriptions of both early and more recent computers. The designer's most important study, they argue, is other people's designs. This book's computer zoo will give you a unique resource for precise information about 30 important machines. Armed with the factors pro and con on the various known solutions to design problems, you will be better able to determine the most fruitful architectural course for your own design. 0201105578B04062001