The Art of Modeling Mechanical Systems


Book Description

The papers in this volume present rules for mechanical models in a general systematic way, always in combination with small and large examples, many from industry, illustrating the most important features of modeling. The best way to reach a good solution is discussed. The papers address researchers and engineers from academia and from industry, doctoral students and postdocs, working in the fields of mechanical, civil and electrical engineering as well as in fields like applied physics or applied mathematics.




Design and Modeling of Mechanical Systems


Book Description

The 5th International Congress on Design and Modeling of Mechanical Systems (CMSM) was held in Djerba, Tunisia on March 25-27, 2013 and followed four previous successful editions, which brought together international experts in the fields of design and modeling of mechanical systems, thus contributing to the exchange of information and skills and leading to a considerable progress in research among the participating teams. The fifth edition of the congress (CMSM ́2013), organized by the Unit of Mechanics, Modeling and Manufacturing (U2MP) of the National School of Engineers of Sfax, Tunisia, the Mechanical Engineering Laboratory (MBL) of the National School of Engineers of Monastir, Tunisia and the Mechanics Laboratory of Sousse (LMS) of the National School of Engineers of Sousse, Tunisia, saw a significant increase of the international participation. This edition brought together nearly 300 attendees who exposed their work on the following topics: mechatronics and robotics, dynamics of mechanical systems, fluid structure interaction and vibroacoustics, modeling and analysis of materials and structures, design and manufacturing of mechanical systems. This book is the proceedings of CMSM ́2013 and contains a careful selection of high quality contributions, which were exposed during various sessions of the congress. The original articles presented here provide an overview of recent research advancements accomplished in the field mechanical engineering.




PDE Modeling and Boundary Control for Flexible Mechanical System


Book Description

This book provides a comprehensive review of fundamental issues in the dynamical modeling and vibration control design for several flexible mechanical systems, such as flexible satellites, flexible aerial refueling hoses, and flexible three-dimensional manipulators. Offering an authoritative reference guide to the dynamics and control of flexible mechanical systems, it equips readers to solve a host of problems concerning these systems. It provides not only a complete overview of flexible systems, but also a better understanding of the technical levels involved. The book is divided into ten chapters: Chapters 1 and 2 lay the foundations, while the remaining chapters explore several independent yet related topics in detail. The book’s final chapter presents conclusions and recommendations for future research. Given its scope, the book is intended for researchers, graduate students, and engineers whose work involves control systems, flexible mechanical systems, and related areas.




Design and Modeling of Mechanical Systems—III


Book Description

This book offers a collection of original peer-reviewed contributions presented at the 7th International Congress on Design and Modeling of Mechanical Systems (CMSM’2017), held in Hammamet, Tunisia, from the 27th to the 29th of March 2017. It reports on both research findings, innovative industrial applications and case studies concerning mechanical systems and related to modeling and analysis of materials and structures, multiphysics methods, nonlinear dynamics, fluid structure interaction and vibroacoustics, design and manufacturing engineering. Continuing on the tradition of the previous editions, this proceedings offers a broad overview on the state-of-the art in the field and a useful resource for academic and industry specialists active in the field of design and modeling of mechanical systems. CMSM’2017 was jointly organized by two leading Tunisian research laboratories: the Mechanical, Modeling and Manufacturing Laboratory of the National Engineering School of Sfax and the Mechanical Engineering Laboratory of the National Engineering School of Monastir..




Impacts in Mechanical Systems


Book Description

This volume constitutes an advanced introduction to the field of analysis, modeling and numerical simulation of rigid body mechanical systems with unilateral constraints. The topics include Moreau's sweeping process, the numerical analysis of nonsmooth multibody systems with friction, the study of energetical restitution coefficients for elasto-plastic models, the study of stability and bifurcation in systems with impacts, and the development of a multiple impact rule for Newton's cradle and the simple rocking model. Combining pedagogical aspects with innovative approaches, this book will not only be of interest to researchers working actively in the field, but also to graduate students wishing to get acquainted with this field of research through lectures written at a level also accessible to nonspecialists.




Advanced Design of Mechanical Systems: From Analysis to Optimization


Book Description

Multibody systems are used extensively in the investigation of mechanical systems including structural and non-structural applications. It can be argued that among all the areas in solid mechanics the methodologies and applications associated to multibody dynamics are those that provide an ideal framework to aggregate d- ferent disciplines. This idea is clearly reflected, e. g. , in the multidisciplinary applications in biomechanics that use multibody dynamics to describe the motion of the biological entities, in finite elements where multibody dynamics provides - werful tools to describe large motion and kinematic restrictions between system components, in system control where the methodologies used in multibody dynamics are the prime form of describing the systems under analysis, or even in many - plications that involve fluid-structure interaction or aero elasticity. The development of industrial products or the development of analysis tools, using multibody dynamics methodologies, requires that the final result of the devel- ments are the best possible within some limitations, i. e. , they must be optimal. Furthermore, the performance of the developed systems must either be relatively insensitive to some of their design parameters or be sensitive in a controlled manner to other variables. Therefore, the sensitivity analysis of such systems is fundamental to support the decision making process. This book presents a broad range of tools for designing mechanical systems ranging from the kinematic and dynamic analysis of rigid and flexible multibody systems to their advanced optimization.




Ordinary Differential Equations and Mechanical Systems


Book Description

This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a unique self-contained source for both theoretically and application oriented graduate and doctoral students, university teachers, researchers and engineers of mechanical, civil and mechatronic engineering.




An Introduction to System Modeling and Control


Book Description

A practical and straightforward exploration of the basic tools for the modeling, analysis, and design of control systems In An Introduction to System Modeling and Control, Dr. Chiasson delivers an accessible and intuitive guide to understanding modeling and control for students in electrical, mechanical, and aerospace/aeronautical engineering. The book begins with an introduction to the need for control by describing how an aircraft flies complete with figures illustrating roll, pitch, and yaw control using its ailerons, elevators, and rudder, respectively. The book moves on to rigid body dynamics about a single axis (gears, cart rolling down an incline) and then to modeling DC motors, DC tachometers, and optical encoders. Using the transfer function representation of these dynamic models, PID controllers are introduced as an effective way to track step inputs and reject constant disturbances. It is further shown how any transfer function model can be stabilized using output pole placement and on how two-degree of freedom controllers can be used to eliminate overshoot in step responses. Bode and Nyquist theory are then presented with an emphasis on how they give a quantitative insight into a control system's robustness and sensitivity. An Introduction to System Modeling and Control closes with chapters on modeling an inverted pendulum and a magnetic levitation system, trajectory tracking control using state feedback, and state estimation. In addition the book offers: A complete set of MATLAB/SIMULINK files for examples and problems included in the book. A set of lecture slides for each chapter. A solutions manual with recommended problems to assign. An analysis of the robustness and sensitivity of four different controller designs for an inverted pendulum (cart-pole). Perfect for electrical, mechanical, and aerospace/aeronautical engineering students, An Introduction to System Modeling and Control will also be an invaluable addition to the libraries of practicing engineers.




Modeling and Simulation of Dynamic Systems


Book Description

Introduction to modeling and simulation - Models for dynamic systems and systems similarity - Modeling of engineering systems - Mechanical systems - Electrical systems - Fluid systems - Thermal systems - Mixed discipline systems - System dynamic response analysis - Frequency response - Time response and digital simulation - Engineering applications - System design and selection of components.




Dynamics and Bifurcations of Non-Smooth Mechanical Systems


Book Description

This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.