The Biochemistry of Plants


Book Description

The Biochemistry of Plants, Volume 14: Carbohydrates provides information pertinent to the fundamental aspects of plant biochemistry. This book deals with the function and structure of the plant cell wall by describing the physical and chemical properties of cell wall components. Organized into 11 chapters, this volume begins with an overview of hexose phosphate metabolism in nonphotosynthetic tissues. This text then examines the findings in fructan structures, conformations, and linkages, the enzymes involved in fructan synthesis and degradation, and their cellular regulation, location, and metabolic role in plants. Other chapters consider the methods employing enzymes to determine starch structure. This book discusses as well the different biosynthetic modes of plant cell walls. The final chapter deals with the various environmental factors that influence expression of the ?-amylase gene, suggesting how molecular biology may help in understanding carbohydrate biochemistry and the enzymes involved in carbohydrate synthesis and metabolism. This book is a valuable resource for plant biochemists.




Plant Biochemistry


Book Description

1 A Leaf Cell Consists of Several Metabolic Compartments 2 The Use of Energy from Sunlight by Photosynthesis is the Basis of Life on Earth 3 Photosynthesis is an Electron Transport Process 4 ATP is Generated by Photosynthesis 5 Mitochondria are the Power Station of the Cell 6 The Calvin Cycle Catalyzes Photosynthetic CO2 Assimilation 7 In the Photorespiratory Pathway Phosphoglycolate Formed by the Oxygenase Activity of RubisCo is Recycled 8 Photosynthesis Implies the Consumption of Water 9 Polysaccharides are Storage and Transport Forms of Carbohydrates Produced by Photosynthesis 10Nitrate Assimilation is Essential for the Synthesis of Organic Matter 11 Nitrogen Fixation Enables the Nitrogen in the Air to be Used for Plant Growth 12 Sulfate Assimilation Enables the Synthesis of Sulfur Containing Substances 13 Phloem Transport Distributes Photoassimilates to the Various Sites of Consumption and Storage 14 Products of Nitrate Assimilation are Deposited in Plants as Storage Proteins 15 Glycerolipids are Membrane Constituents and Function as Carbon Stores 16 Secondary Metabolites Fulfill Specific Ecological Functions in Plants 17 Large Diversity of Isoprenoids has Multiple Funtions in Plant Metabolism 18 Phenylpropanoids Comprise a Multitude of Plant Secondary Metabolites and Cell Wall Components 19 Multiple Signals Regulate the Growth and Development of Plant Organs and Enable Their Adaptation to Environmental Conditions 20 A Plant Cell has Three Different Genomes 21 Protein Biosynthesis Occurs at Different Sites of a Cell 22 Gene Technology Makes it Possible to Alter Plants to Meet Requirements of Agriculture, Nutrition, and Industry.




Plant Biochemistry


Book Description

Plant Biochemistry presents each topic from the cellular level to the ecological and environmental levels, placing it in the context of the whole plant. Biochemical pathways are represented as route maps, showing how one reaction follows another. These maps emphasize the dynamism and fl exibility of the plant in the face of environmental challenges. The unique and wide-ranging approach of this book emphasizes the importance of teaching and learning pathways within the framework of what the pathway does and why it is needed. Plant Biochemistry is invaluable to undergraduate students who wish to gain insight into the relevance of plant biochemistry to humans and animals. It is an ideal reference text for graduates and researchers.




Biochemistry and Molecular Biology of Plants


Book Description

With over 1000 original drawings and 500 photographs, this work offers complete coverage of cell biology, plant physiology and molecular biology.




Secondary Plant Products


Book Description

Approx.798 pages




Plant Amino Acids


Book Description

Covers the basic knowledge of the regulation of biosynthesis of various amino acids in plants and the application of this knowledge to the discovery of novel inhibitors of amino acid biosynthesis and for enhancing the nutritional value of plant products. Provides an exhaustive list of pathway inhibitors.




Methods in Plant Biochemistry Volume 1


Book Description

Methods in Plant Biochemistry, Volume 1: Plant Phenolics reviews current knowledge about techniques used in the analysis of the biochemistry of plant polyphenols and their importance in the agricultural and food industries. It looks at the application of these techniques in the fractionation of cellular constituents, isolation of enzymes, electrophoretic separation of nucleic acids and proteins, and chromatographic identification of the intermediates and products of cellular metabolism. Organized into 15 chapters, this book opens with an overview of the general procedures and measurement of total phenolics, from detecting phenolic substances in crude plant extracts to determining which classes they belong to and the quantitative estimation of total phenol. The reader is introduced to the chemistry, structural variation, function, and distribution of each class of plant phenolics and, in a few cases where this is practicable, detailed listings of known derivatives are given. Most chapters focus on chromatographic separations and high performance liquid chromatography (HPLC), along with thin layer and paper Rf values with HPLC retention times and NMR spectroscopy. The book also outlines the procedures for the extraction, isolation, separation, and characterization of different classes of phenolic compounds, ranging from phenols and phenolic acids to phenylpropanoids, lignins, stilbenes and phenanthrenes, flavones and flavonols, chalcones and aurones, flavanoids, anthocyanins, biflavanoids, tannins, isoflavanoids, quinones, xanthones, and lichen substances. The book is a valuable resource for students, biochemists, and researchers in the plant sciences.




Plant Biochemistry


Book Description

Plant Biochemistry focuses on the biological processes involved in plants, particularly noting metabolism, electron transport, biogenesis, and germination. The manuscript first offers information on the substructures and subfunctions of plant cell, including cell and subcell, enzymes, ribosomes, nucleus, cellular membranes, mitochondria and electron transport, chloroplast, and the substructure and function of the cell wall. The text then elaborates on basic metabolism. Enzymology, the path of carbon in respiratory metabolism, mono- and oligosaccharides, starch, insulin, and other reserve polysaccharides, and the biogenesis of the cell wall are discussed. The publication explains plant metabolism and control. Discussions focus on plant acids, alkaloid biogenesis, coumarins, phenylpropanes, and lignin, ethylene and polyacetylenes, steroids, and seed development and germination. The book is a valuable source of information for students or professional workers in the plant sciences.




Physiology and Biochemistry of Plant Cell Walls


Book Description

The plant cell wall plays a vital role in almost every aspect of plant physiology. New techniques in spectroscopy, biophysics and molecular biology have revealed the extraordinary complexity of its molecular architecture and just how important this structure is in the control of plant growth and development. The Second Edition of this accessible and integrated textbook has been revised and updated throughout. As well as focusing on the structure and function of plant cell walls the book also looks at the applications of this research. It discusses how plant cell walls can be exploited by the biotechnology industry and some of the main challenges for future research. Key topics include: architecture and skeletal functions of the wall; cell-wall formation; control of cell growth; role in intracellular transport; interactions with other organisms; cell-wall degradation; biotechnological applications of cell-walls; role in diet and health. This textbook provides a clear, well illustrated introduction to the physiology and biochemistry of plant cell walls which will be invaluable to upper level undergraduate and post graduate students of plant physiology, plant pathology, plant biotechnology and biochemistry.




Biochemistry and Physiology of Plant Hormones


Book Description

Biochemistry and Physiology oj Plant Hormones is intended primarily as a textbook or major reference for a one-term intermediate-level or advanced course dealing with hormonal regulation of growth and development of seed plants for students majoring in biology, botany, and applied botany fields such as agronomy, forestry, and horticulture. Additionally, it should be useful to others who wish to become familiar with the topic in relation to their principal student or professional interests in related fields. It is assumed that readers will have a background in fundamental biology, plant physiology, and biochemistry. The dominant objective of Biochemistry and Physiology oj Plant Hor mones is to summarize, in a reasonably balanced and comprehensive way, the current state of our fundamental knowledge regarding the major kinds of hormones and the phytochrome pigment system. Written primarily for students rather than researchers, the book is purposely brief. Biochemical aspects have been given priority intentionally, somewhat at the expense of physiological considerations. There are extensive citations of the literature-both old and recent-but, it is hoped, not so much documentation as to make the book difficult to read. The specific choices of publications to cite and illustrations to present were made for different reasons, often to illustrate historical develop ment, sometimes to illustrate ideas that later proved invalid, occasionally to exemplify conflicting hypotheses, and most often to illustrate the current state of our knowledge about hormonal phenomena.