The Book of Involutions


Book Description

This monograph is an exposition of the theory of central simple algebras with involution, in relation to linear algebraic groups. It provides the algebra-theoretic foundations for much of the recent work on linear algebraic groups over arbitrary fields. Involutions are viewed as twisted forms of (hermitian) quadrics, leading to new developments on the model of the algebraic theory of quadratic forms. In addition to classical groups, phenomena related to triality are also discussed, as well as groups of type $F_4$ or $G_2$ arising from exceptional Jordan or composition algebras. Several results and notions appear here for the first time, notably the discriminant algebra of an algebra with unitary involution and the algebra-theoretic counterpart to linear groups of type $D_4$. This volume also contains a Bibliography and Index. Features: original material not in print elsewhere a comprehensive discussion of algebra-theoretic and group-theoretic aspects extensive notes that give historical perspective and a survey on the literature rational methods that allow possible generalization to more general base rings




The Book of Involutions


Book Description




Involution


Book Description

The book provides a self-contained account of the formal theory of general, i.e. also under- and overdetermined, systems of differential equations which in its central notion of involution combines geometric, algebraic, homological and combinatorial ideas.




Involutions on Manifolds


Book Description

This book contains the results of work done during the years 1967-1970 on fixed-point-free involutions on manifolds, and is an enlarged version of the author's doctoral dissertation [54J written under the direction of Professor William Browder. The subject of fixed-paint-free involutions, as part of the subject of group actions on manifolds, has been an important source of problems, examples and ideas in topology for the last four decades, and receives renewed attention every time a new technical development suggests new questions and methods ([62, 8, 24, 63J). Here we consider mainly those properties of fixed-point-free involutions that can be best studied using the techniques of surgery on manifolds. This approach to the subject was initiated by Browder and Livesay. Special attention is given here to involutions of homotopy spheres, but even for this particular case, a more general theory is very useful. Two important related topics that we do not touch here are those of involutions with fixed points, and the relationship between fixed-point-free involutions and free Sl-actions. For these topics, the reader is referred to [23J, and to [33J, [61J, [82J, respectively. The two main problems we attack are those of classification of involutions, and the existence and uniqueness of invariant submanifolds with certain properties. As will be seen, these problems are closely related. If (T, l'n) is a fixed-point-free involution of a homotopy sphere l'n, the quotient l'n/Tis called a homotopy projective space.




Quaternion Algebras


Book Description

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.




An Introduction to Symmetric Functions and Their Combinatorics


Book Description

This book is a reader-friendly introduction to the theory of symmetric functions, and it includes fundamental topics such as the monomial, elementary, homogeneous, and Schur function bases; the skew Schur functions; the Jacobi–Trudi identities; the involution ω ω; the Hall inner product; Cauchy's formula; the RSK correspondence and how to implement it with both insertion and growth diagrams; the Pieri rules; the Murnaghan–Nakayama rule; Knuth equivalence; jeu de taquin; and the Littlewood–Richardson rule. The book also includes glimpses of recent developments and active areas of research, including Grothendieck polynomials, dual stable Grothendieck polynomials, Stanley's chromatic symmetric function, and Stanley's chromatic tree conjecture. Written in a conversational style, the book contains many motivating and illustrative examples. Whenever possible it takes a combinatorial approach, using bijections, involutions, and combinatorial ideas to prove algebraic results. The prerequisites for this book are minimal—familiarity with linear algebra, partitions, and generating functions is all one needs to get started. This makes the book accessible to a wide array of undergraduates interested in combinatorics.




Architectural Involutions


Book Description

Winner of the MLA Prize for Independent Scholars Taking the reader on an inward journey from façades to closets, from physical to psychic space, Architectural Involutions offers an alternative genealogy of theater by revealing how innovations in architectural writing and practice transformed an early modern sense of interiority. The book launches from a matrix of related “platforms”—a term that in early modern usage denoted scaffolds, stages, and draftsmen’s sketches—to situate Alberti, Shakespeare, Jonson, and others within a landscape of spatial and visual change. As the English house underwent a process of inward folding, replacing a logic of central assembly with one of dissemination, the subject who negotiated this new scenography became a flashpoint of conflict in both domestic and theatrical arenas. Combining theory with archival findings, Mimi Yiu reveals an emergent desire to perform subjectivity, to unfold an interior face to an admiring public. Highly praised for its lucid writing, comprehensive supplementary material, and engaging tone, Architectural Involutions was the winner of the 2016 MLA Prize for Independent Scholars.




The Monster Group and Majorana Involutions


Book Description

A rigorous construction and uniqueness proof for the Monster group, detailing its relation to Majorana involutions.




Quadratic and Hermitian Forms over Rings


Book Description

From its birth (in Babylon?) till 1936 the theory of quadratic forms dealt almost exclusively with forms over the real field, the complex field or the ring of integers. Only as late as 1937 were the foundations of a theory over an arbitrary field laid. This was in a famous paper by Ernst Witt. Still too early, apparently, because it took another 25 years for the ideas of Witt to be pursued, notably by Albrecht Pfister, and expanded into a full branch of algebra. Around 1960 the development of algebraic topology and algebraic K-theory led to the study of quadratic forms over commutative rings and hermitian forms over rings with involutions. Not surprisingly, in this more general setting, algebraic K-theory plays the role that linear algebra plays in the case of fields. This book exposes the theory of quadratic and hermitian forms over rings in a very general setting. It avoids, as far as possible, any restriction on the characteristic and takes full advantage of the functorial aspects of the theory. The advantage of doing so is not only aesthetical: on the one hand, some classical proofs gain in simplicity and transparency, the most notable examples being the results on low-dimensional spinor groups; on the other hand new results are obtained, which went unnoticed even for fields, as in the case of involutions on 16-dimensional central simple algebras. The first chapter gives an introduction to the basic definitions and properties of hermitian forms which are used throughout the book.




Cohomological Invariants in Galois Cohomology


Book Description

This volume addresses algebraic invariants that occur in the confluence of several important areas of mathematics, including number theory, algebra, and arithmetic algebraic geometry. The invariants are analogues for Galois cohomology of the characteristic classes of topology, which have been extremely useful tools in both topology and geometry. It is hoped that these new invariants will prove similarly useful. Early versions of the invariants arose in the attempt to classify the quadratic forms over a given field. The authors are well-known experts in the field. Serre, in particular, is recognized as both a superb mathematician and a master author. His book on Galois cohomology from the 1960s was fundamental to the development of the theory. Merkurjev, also an expert mathematician and author, co-wrote The Book of Involutions (Volume 44 in the AMS Colloquium Publications series), an important work that contains preliminary descriptions of some of the main results on invariants described here. The book also includes letters between Serre and some of the principal developers of the theory. It will be of interest to graduate students and research mathematicians interested in number th