The Global Carbon Cycle


Book Description

While a number of gases are implicated in global warming, carbon dioxide is the most important contributor, and in one sense the entire phenomena can be seen as a human-induced perturbation of the carbon cycle. The Global Carbon Cycle offers a scientific assessment of the state of current knowledge of the carbon cycle by the world's leading scientists sponsored by SCOPE and the Global Carbon Project, and other international partners. It gives an introductory over-view of the carbon cycle, with multidisciplinary contributions covering biological, physical, and social science aspects. Included are 29 chapters covering topics including: an assessment of carbon-climate-human interactions; a portfolio of carbon management options; spatial and temporal distribution of sources and sinks of carbon dioxide; socio-economic driving forces of emissions scenarios. Throughout, contributors emphasize that all parts of the carbon cycle are interrelated, and only by developing a framework that considers the full set of feedbacks will we be able to achieve a thorough understanding and develop effective management strategies. The Global Carbon Cycle edited by Christopher B. Field and Michael R. Raupach is part of the Rapid Assessment Publication series produced by the Scientific Committee on Problems of the Environment (SCOPE), in an effort to quickly disseminate the collective knowledge of the world's leading experts on topics of pressing environmental concern.




Distributed Acoustic Sensing in Geophysics


Book Description

A comprehensive handbook on state-of-the-art DAS technology and applications Distributed Acoustic Sensing (DAS) is a technology that records sound and vibration signals along a fiber optic cable. Its advantages of high resolution, continuous, and real-time measurements mean that DAS systems have been rapidly adopted for a range of applications, including hazard mitigation, energy industries, geohydrology, environmental monitoring, and civil engineering. Distributed Acoustic Sensing in Geophysics: Methods and Applications presents experiences from both industry and academia on using DAS in a range of geophysical applications. Volume highlights include: DAS concepts, principles, and measurements Comprehensive review of the historical development of DAS and related technologies DAS applications in hydrocarbon, geothermal, and mining industries DAS applications in seismology DAS applications in environmental and shallow geophysics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.







The Carbon Cycle


Book Description

Reducing carbon dioxide (CO2) emissions is imperative to stabilizing our future climate. Our ability to reduce these emissions combined with an understanding of how much fossil-fuel-derived CO2 the oceans and plants can absorb is central to mitigating climate change. In The Carbon Cycle, leading scientists examine how atmospheric carbon dioxide concentrations have changed in the past and how this may affect the concentrations in the future. They look at the carbon budget and the "missing sink" for carbon dioxide. They offer approaches to modeling the carbon cycle, providing mathematical tools for predicting future levels of carbon dioxide. This comprehensive text incorporates findings from the recent IPCC reports. New insights, and a convergence of ideas and views across several disciplines make this book an important contribution to the global change literature.




The Global Carbon Cycle


Book Description

A must-have introduction to this fundamental driver of the climate system The Global Carbon Cycle is a short introduction to this essential geochemical driver of the Earth's climate system, written by one of the world's leading climate-science experts. In this one-of-a-kind primer, David Archer engages readers in clear and simple terms about the many ways the global carbon cycle is woven into our climate system. He begins with a concise overview of the subject, and then looks at the carbon cycle on three different time scales, describing how the cycle interacts with climate in very distinct ways in each. On million-year time scales, feedbacks in the carbon cycle stabilize Earth's climate and oxygen concentrations. Archer explains how on hundred-thousand-year glacial/interglacial time scales, the carbon cycle in the ocean amplifies climate change, and how, on the human time scale of decades, the carbon cycle has been dampening climate change by absorbing fossil-fuel carbon dioxide into the oceans and land biosphere. A central question of the book is whether the carbon cycle could once again act to amplify climate change in centuries to come, for example through melting permafrost peatlands and methane hydrates. The Global Carbon Cycle features a glossary of terms, suggestions for further reading, and explanations of equations, as well as a forward-looking discussion of open questions about the global carbon cycle.




The Global Carbon Cycle and Climate Change


Book Description

The Global Carbon Cycle and Climate Change examines the global carbon cycle and the energy balance of the biosphere, following carbon and energy through increasingly complex levels of metabolism from cells to ecosystems. Utilizing scientific explanations, analyses of ecosystem functions, extensive references, and cutting-edge examples of energy flow in ecosystems, it is an essential resource to aid in understanding the scientific basis of the role played by ecological systems in climate change. This book addresses the need to understand the global carbon cycle and the interrelationships among the disciplines of biology, chemistry, and physics in a holistic perspective. The Global Carbon Cycle and Climate Change is a compendium of easily accessible, technical information that provides a clear understanding of energy flow, ecosystem dynamics, the biosphere, and climate change. "Dr. Reichle brings over four decades of research on the structure and function of forest ecosystems to bear on the existential issue of our time, climate change. Using a comprehensive review of carbon biogeochemistry as scaled from the physiology of organisms to landscape processes, his analysis provides an integrated discussion of how diverse processes at varying time and spatial scales function. The work speaks to several audiences. Too often students study their courses in a vacuum without necessarily understanding the relationships that transcend from the cellular process, to organism, to biosphere levels and exist in a dynamic atmosphere with its own processes, and spatial dimensions. This book provides the template whereupon students can be guided to see how the pieces fit together. The book is self-contained but lends itself to be amplified upon by a student or professor. The same intellectual quest would also apply for the lay reader who seeks a broad understanding." --W.F. Harris - Provides clear explanations, examples, and data for understanding fossil fuel emissions affecting atmospheric CO2 levels and climate change, and the role played by ecosystems in the global cycle of energy and carbon - Presents a comprehensive, factually based synthesis of the global cycle of carbon in the biosphere and the underlying scientific bases - Includes clear illustrations of environmental processes




The Changing Carbon Cycle


Book Description

The United States Government, cognizant of its responsibilities to future generations, has been sponsoring research for nine years into the causes, effects, and potential impacts of increased concentrations of carbon dioxide (C0 ) in the atmosphere. Agencies such as the National Science Foun 2 dation, National Oceanic and Atmospheric Administration, and the U.S. Department of Energy (DOE) cooperatively spent about $100 million from FY 1978 through FY 1984 directly on the study of CO • The DOE, as the 2 lead government agency for coordinating the government' s research ef forts, has been responsible for about 60% of these research efforts. William James succinctly defined our purpose when he stated science must be based upon " ... irreducible and stubborn facts." Scientific knowledge can and will reduce the present significant uncertainty sur rounding our understanding of the causes, effects, and potential impacts of increasing atmospheric CO2• We have come far during the past seven years in resolving some underlyinig doubts and in narrowing the ranges of disagreement. Basic concepts have become less murky. Yet, much more must be accomplished; more irreducible and stubborn facts are needed to reduce the uncertainties so that we can improve our knowledge base. Uncertainty can never be reduced to zero. However, with a much improved knowledge base, we will be able to learn, under stand, and be in a position to make decisions.




The Ocean Carbon Cycle and Climate


Book Description

Our desire to understand the global carbon cycle and its link to the climate system represents a huge challenge. These overarching questions have driven a great deal of scientific endeavour in recent years: What are the basic oceanic mechanisms which control the oceanic carbon reservoirs and the partitioning of carbon between ocean and atmosphere? How do these mechanisms depend on the state of the climate system and how does the carbon cycle feed back on climate? What is the current rate at which fossil fuel carbon dioxide is absorbed by the oceans and how might this change in the future? To begin to answer these questions we must first understand the distribution of carbon in the ocean, its partitioning between different ocean reservoirs (the "solubility" and "biological" pumps of carbon), the mechanisms controlling these reservoirs, and the relationship of the significant physical and biological processes to the physical environment. The recent surveys from the JGOFS and WOCE (Joint Global Ocean Flux Study and World Ocean Circulation Ex periment) programs have given us a first truly global survey of the physical and biogeochemical properties of the ocean. These new, high quality data provide the opportunity to better quantify the present oceans reservoirs of carbon and the changes due to fossil fuel burning. In addition, diverse process studies and time-series observations have clearly revealed the complexity of interactions between nutrient cycles, ecosystems, the carbon-cycle and the physical envi ronment.




CO2 Rising


Book Description

An introduction to the global carbon cycle and the human-caused disturbances to it that are at the heart of global warming and climate change. The most colossal environmental disturbance in human history is under way. Ever-rising levels of the potent greenhouse gas carbon dioxide (CO2) are altering the cycles of matter and life and interfering with the Earth's natural cooling process. Melting Arctic ice and mountain glaciers are just the first relatively mild symptoms of what will result from this disruption of the planetary energy balance. In CO2 Rising, scientist Tyler Volk explains the process at the heart of global warming and climate change: the global carbon cycle. Vividly and concisely, Volk describes what happens when CO2 is released by the combustion of fossil fuels (coal, oil, and natural gas), letting loose carbon atoms once trapped deep underground into the interwoven web of air, water, and soil. To demonstrate how the carbon cycle works, Volk traces the paths that carbon atoms take during their global circuits. Showing us the carbon cycle from a carbon atom's viewpoint, he follows one carbon atom into a leaf of barley and then into an alcohol molecule in a glass of beer, through the human bloodstream, and then back into the air. He also compares the fluxes of carbon brought into the biosphere naturally against those created by the combustion of fossil fuels and explains why the latter are responsible for rising temperatures. Knowledge about the global carbon cycle and the huge disturbances that human activity produces in it will equip us to consider the hard questions that Volk raises in the second half of CO2 Rising: projections of future levels of CO2; which energy systems and processes (solar, wind, nuclear, carbon sequestration?) will power civilization in the future; the relationships among the wealth of nations, energy use, and CO2 emissions; and global equity in per capita emissions. Answering these questions will indeed be our greatest environmental challenge.




Deep Carbon


Book Description

A comprehensive guide to carbon inside Earth - its quantities, movements, forms, origins, changes over time and impact on planetary processes. This title is also available as Open Access on Cambridge Core.