The Carbon Dioxide System and Eutrophication


Book Description

To determine the feasibility of eutrophication control by controlling carbon, three major areas were studied: the steady state, in which the growth rates of algae at various constant, maintained dissolved carbon dioxide concentrations were determined; the non-equilibrium, where natural atmospheric replenishment was the sole carbon source; and algal growth with inorganic bicarbonate as the sole carbon source. In studying growth rates of Chlorella, Microcystis, and Anabaena with respect to carbon availability, it was found that algae can utilize dissolved concentrations of carbon dioxide much lower than those from atmospheric equilibria.




Microbial Role in the Carbon Cycle in Tropical Inland Aquatic Ecosystems


Book Description

Aquatic microorganisms are tidily related to the carbon cycle in aquatic systems, especially in respect to its accumulation and emission to atmosphere. In one hand, the autotrophs are responsible for the carbon input to the ecosystems and trophic chain. On the other hand, the heterotrophs traditionally play a role in the carbon mineralization and, since microbial loop theory, may play a role to carbon flow through the organisms. However, it is not yet clear how the heterotrophs contribute to carbon retention and emission especially from tropical aquatic ecosystems. Most of the studies evaluating the role of microbes to carbon cycle in inland waters were performed in high latitudes and only a few studies in the tropical area. In the prospective of global changes where the warm tropical lakes and rivers become even warmer, it is important to understand how microorganisms behave and interact with carbon cycle in the Earth region with highest temperature and light availability. This research topic documented microbial responses to natural latitudinal gradients, spatial within and between ecosystems gradients, temporal approaches and temperature and nutrient manipulations in the water and in the sediment.




Eutrophication: causes, consequences and control


Book Description

Eutrophication continues to be a major global challenge to water quality scientists. The global demand on water resources due to population increases, economic development, and emerging energy development schemes has created new environmental challenges to global sustainability. Eutrophication, causes, consequences, and control provides a current account of many important aspects of the processes of natural and accelerated eutrophication in major aquatic ecosystems around the world. The connections between accelerated eutrophication and climate change, chemical contamination of surface waters, and major environmental and ecological impacts on aquatic ecosystems are discussed. Water quality changes typical of eutrophication events in major climate zones including temperate, tropical, subtropical, and arid regions are included along with current approaches to treat and control increased eutrophication around the world. The book provides many useful new insights to address the challenges of global increases in eutrophication and the increasing threats to biodiversity and water quality.




Clean Coastal Waters


Book Description

Environmental problems in coastal ecosystems can sometimes be attributed to excess nutrients flowing from upstream watersheds into estuarine settings. This nutrient over-enrichment can result in toxic algal blooms, shellfish poisoning, coral reef destruction, and other harmful outcomes. All U.S. coasts show signs of nutrient over-enrichment, and scientists predict worsening problems in the years ahead. Clean Coastal Waters explains technical aspects of nutrient over-enrichment and proposes both immediate local action by coastal managers and a longer-term national strategy incorporating policy design, classification of affected sites, law and regulation, coordination, and communication. Highlighting the Gulf of Mexico's "Dead Zone," the Pfiesteria outbreak in a tributary of Chesapeake Bay, and other cases, the book explains how nutrients work in the environment, why nitrogen is important, how enrichment turns into over-enrichment, and why some environments are especially susceptible. Economic as well as ecological impacts are examined. In addressing abatement strategies, the committee discusses the importance of monitoring sites, developing useful models of over-enrichment, and setting water quality goals. The book also reviews voluntary programs, mandatory controls, tax incentives, and other policy options for reducing the flow of nutrients from agricultural operations and other sources.







Limnology


Book Description

For senior-level undergraduate or graduate courses in limnology or aquatic management in the Life Sciences and Biology departments. Written from an ecosystem perspective, this user-friendly and thorough text discusses events that happen below the waterline of lakes, rivers, and wetlands. The text links them back to the attributers of the drainage basins, the overlying atmosphere and climate, which have a major impact on inland waters and their biota. It also contains a large number of easy-to-comprehend figures and tables that reinforce the written material and provide evidence for statements made.













Monitoring of Marine Pollution


Book Description

Many of the pollutants discharged into the sea are directly or indirectly the result of human activities. Some of these substances are biodegradable, while others are not. This study is devoted to monitoring areas of the environment. Methods assessment is based on monitoring data and an evaluation of the impact of pollution.Surveillance provides a scientific basis for standards development and application. The methodology of marine pollution control is governed by algorithms and models. A monitoring strategy should be put in place, coupled with an environmental assessment concept, through targeted research activities in areas identified at local and regional levels. This concept will make it possible to diagnose the state of "health" of these zones and consequently to correct any anomalies. Monitoring of the marine and coastal environment is based on recent methods and validated after experiments in the field of marine pollution.