Characters of Reductive Groups over a Finite Field. (AM-107), Volume 107


Book Description

This book presents a classification of all (complex) irreducible representations of a reductive group with connected centre, over a finite field. To achieve this, the author uses etale intersection cohomology, and detailed information on representations of Weyl groups.




A Course in Finite Group Representation Theory


Book Description

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.




Discrete Series of GLn Over a Finite Field. (AM-81), Volume 81


Book Description

In this book Professor Lusztig solves an interesting problem by entirely new methods: specifically, the use of cohomology of buildings and related complexes. The book gives an explicit construction of one distinguished member, D(V), of the discrete series of GLn (Fq), where V is the n-dimensional F-vector space on which GLn(Fq) acts. This is a p-adic representation; more precisely D(V) is a free module of rank (q--1) (q2—1)...(qn-1—1) over the ring of Witt vectors WF of F. In Chapter 1 the author studies the homology of partially ordered sets, and proves some vanishing theorems for the homology of some partially ordered sets associated to geometric structures. Chapter 2 is a study of the representation △ of the affine group over a finite field. In Chapter 3 D(V) is defined, and its restriction to parabolic subgroups is determined. In Chapter 4 the author computes the character of D(V), and shows how to obtain other members of the discrete series by applying Galois automorphisms to D(V). Applications are in Chapter 5. As one of the main applications of his study the author gives a precise analysis of a Brauer lifting of the standard representation of GLn(Fq).




Local Representation Theory


Book Description

The aim of this text is to present some of the key results in the representation theory of finite groups. In order to keep the account reasonably elementary, so that it can be used for graduate-level courses, Professor Alperin has concentrated on local representation theory, emphasising module theory throughout. In this way many deep results can be obtained rather quickly. After two introductory chapters, the basic results of Green are proved, which in turn lead in due course to Brauer's First Main Theorem. A proof of the module form of Brauer's Second Main Theorem is then presented, followed by a discussion of Feit's work connecting maps and the Green correspondence. The work concludes with a treatment, new in part, of the Brauer-Dade theory. As a text, this book contains ample material for a one semester course. Exercises are provided at the end of most sections; the results of some are used later in the text. Representation theory is applied in number theory, combinatorics and in many areas of algebra. This book will serve as an excellent introduction to those interested in the subject itself or its applications.







Complex Representations of GL(2,K) for Finite Fields K


Book Description

These are lecture notes of a course given at Tel-Aviv University. The aim of these notes is to present the theory of representations of GL(2, K) where K is a finite field. However, the presentation of the material has in mind the theory of infinite dimensional representations of GL(2, K) for local fields K.




Modular Representations of Finite Groups of Lie Type


Book Description

A comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic.




The Character Theory of Finite Groups of Lie Type


Book Description

A comprehensive guide to the vast literature and range of results around Lusztig's character theory of finite groups of Lie type.







Quantum Linear Groups and Representations of $GL_n({\mathbb F}_q)$


Book Description

We give a self-contained account of the results originating in the work of James and the second author in the 1980s relating the representation theory of GL[n(F[q) over fields of characteristic coprime to q to the representation theory of "quantum GL[n" at roots of unity. The new treatment allows us to extend the theory in several directions. First, we prove a precise functorial connection between the operations of tensor product in quantum GL[n and Harish-Chandra induction in finite GL[n. This allows us to obtain a version of the recent Morita theorem of Cline, Parshall and Scott valid in addition for p-singular classes. From that we obtain simplified treatments of various basic known facts, such as the computation of decomposition numbers and blocks of GL[n(F[q) from knowledge of the same for the quantum group, and the non-defining analogue of Steinberg's tensor product theorem. We also easily obtain a new double centralizer property between GL[n(F[[q) and quantum GL[n, generalizing a result of Takeuchi. Finally, we apply the theory to study the affine general linear group, following ideas of Zelevinsky in characteristic zero. We prove results that can be regarded as the modular analogues of Zelevinsky's and Thoma's branching rules. Using these, we obtain a new dimension formula for the irreducible cross-characteristic representations of GL[n(F[q), expressing their dimensions in terms of the characters of irreducible modules over the quantum group.