Dust and Chemistry in Astronomy


Book Description

Dust is widespread in the galaxy. To astronomers studying stars it may be just an irritating fog, but it is becoming widely recognized that cosmic dust plays an active role in astrochemistry. Without dust, the galaxy would have evolved differently, and planetary systems like ours would not have occurred. To explore and consolidate this active area of research, Dust and Chemistry in Astronomy covers the role of dust in the formation of molecules in the interstellar medium, with the exception of dust in the solar system. Each chapter provides thorough coverage of our understanding of interstellar dust, particularly its interaction with interstellar gas. Aimed at postgraduate researchers, the book also serves as a thorough review of this significant area of astrophysics for practicing astronomers and graduate students.




The Chemistry of Cosmic Dust


Book Description

It has been firmly established over the last quarter century that cosmic dust plays important roles in astrochemistry. The consequences of these roles affect the formation of planets, stars and even galaxies. Cosmic dust has been a controversial topic but there is now a considerable measure of agreement as to its nature and roles in astronomy, and its initiation of astrobiology. The subject has stimulated an enormous research effort, with researchers in many countries now involved in laboratory research and in ab initio computations. This is the first book devoted to a study of the chemistry of cosmic dust, presenting current thinking on the subject distilled from many publications in surface and solid-state science, and in astronomy. The authors discuss the nature of dust, its formation and evolution, the chemistry it can promote on its surfaces, and the consequences of these functions. The purpose of this book is to review current understanding and to indicate where future work is required. Mainly intended for researchers in the field of astrochemistry, the book could also be used as the basis of a course for postgraduate students who have an interest in astrochemistry.




The Cosmic-Chemical Bond


Book Description

Introducing astrochemistry to a wide audience, this book describes how molecules formed in chemical reactions occur in a range of environments in interstellar and circumstellar space, from shortly after the Big Bang up to the present epoch. Stressing that chemistry in these environments needs to be driven, it helps identify these drivers and the various chemical networks that operate giving rise to signature molecules that enable the physics of the region to be better understood. The book emphasises, in a non-mathematical way, the chemistry of the Milky Way Galaxy and its planet-forming regions, describes how other galaxies may have rather different chemistries and shows how chemistry was important even in the Early Universe when most of the elements had yet to be formed. This book will appeal to anyone with a general interest in chemistry, from students to professional scientists working in interdisciplinary areas and non-scientists fascinated by the evolving and exciting story of chemistry in the cosmos.




Meteorites, Comets, and Planets


Book Description

Volume 1 provides a broad overview of the chemistry of the solar system. It includes chapters on the origin of the elements and solar system abundances, the solar nebula and planet formation, meteorite classification, the major types of meteorites, important processes in early solar system history, geochemistry of the terrestrial planets, the giant planets and their satellite, comets, and the formation and early differentiation of the Earth. This volume is intended to be the first reference work one would consult to learn about the chemistry of the solar system.Reprinted individual volume from the acclaimed Treatise on Geochemistry (10 Volume Set, ISBN 0-08-043751-6, published in 2003)




From Dust to Life


Book Description

The remarkable story of how our solar system came to be The birth and evolution of our solar system is a tantalizing mystery that may one day provide answers to the question of human origins. From Dust to Life tells the remarkable story of how the celestial objects that make up the solar system arose from common beginnings billions of years ago, and how scientists and philosophers have sought to unravel this mystery down through the centuries, piecing together the clues that enabled them to deduce the solar system's layout, its age, and the most likely way it formed. Drawing on the history of astronomy and the latest findings in astrophysics and the planetary sciences, John Chambers and Jacqueline Mitton offer the most up-to-date and authoritative treatment of the subject available. They examine how the evolving universe set the stage for the appearance of our Sun, and how the nebulous cloud of gas and dust that accompanied the young Sun eventually became the planets, comets, moons, and asteroids that exist today. They explore how each of the planets acquired its unique characteristics, why some are rocky and others gaseous, and why one planet in particular—our Earth—provided an almost perfect haven for the emergence of life. From Dust to Life is a must-read for anyone who desires to know more about how the solar system came to be. This enticing book takes readers to the very frontiers of modern research, engaging with the latest controversies and debates. It reveals how ongoing discoveries of far-distant extrasolar planets and planetary systems are transforming our understanding of our own solar system's astonishing history and its possible fate.




A World From Dust


Book Description

A World From Dust describes how a set of chemical rules combined with the principles of evolution in order to create an environment in which life as we know it could unfold. Beginning with simple mathematics, these predictable rules led to the advent of the planet itself, as well as cells, organs and organelles, ecosystems, and increasingly complex life forms. McFarland provides an accessible discussion of a geological history as well, describing how the inorganic matter on Earth underwent chemical reactions with air and water, allowing for life to emerge from the world's first rocks. He traces the history of life all the way to modern neuroscience, and shows how the bioelectric signals that make up the human brain were formed. Most popular science books on the topic present either the physics of how the universe formed, or the biology of how complex life came about; this book's approach would be novel in that it condenses in an engaging way the chemistry that links the two fields. This book is an accessible and multidisciplinary look at how life on our planet came to be, and how it continues to develop and change even today. This book includes 40 illustrations by Gala Bent, print artist and studio faculty member at Cornish College of the Arts, and Mary Anderson, medical illustrator.







Cosmochemistry


Book Description

Cosmochemistry is a rapidly evolving field of planetary science and the second edition of this classic text reflects the exciting discoveries made over the past decade from new spacecraft missions. Topics covered include the synthesis of elements in stars, behaviour of elements and isotopes in the early solar nebula and planetary bodies, and compositions of extra-terrestrial materials. Radioisotope chronology of the early Solar System is also discussed, as well as geochemical exploration of planets by spacecraft, and cosmochemical constraints on the formation of solar systems. Thoroughly updated throughout, this new edition features significantly expanded coverage of chemical fractionation and isotopic analyses; focus boxes covering basic definitions and essential background material on mineralogy, organic chemistry and quantitative topics; and a comprehensive glossary. An appendix of analytical techniques and end-of-chapter review questions, with solutions available at www.cambridge.org/cosmochemistry2e, also contribute to making this the ideal teaching resource for courses on the Solar System's composition as well as a valuable reference for early career researchers.




The Search for Life's Origins


Book Description

The field of planetary biology and chemical evolution draws together experts in astronomy, paleobiology, biochemistry, and space science who work together to understand the evolution of living systems. This field has made exciting discoveries that shed light on how organic compounds came together to form self-replicating molecules-the origin of life. This volume updates that progress and offers recommendations on research programs-including an ambitious effort centered on Mars-to advance the field over the next 10 to 15 years. The book presents a wide range of data and research results on these and other issues: The biogenic elements and their interaction in the interstellar clouds and in solar nebulae. Early planetary environments and the conditions that lead to the origin of life. The evolution of cellular and multicellular life. The search for life outside the solar system. This volume will become required reading for anyone involved in the search for life's beginnings-including exobiologists, geoscientists, planetary scientists, and U.S. space and science policymakers.




Dust in the Universe


Book Description

- First book to present a comprehensive study of dust in the universe




Recent Books