Synthetic and Natural Phenols


Book Description

The chemistry of phenols tends to be ignored in organic chemical textbooks and to be lost amongst the many classes of functional derivatives. This volume is not intended to provide a textbook approach but rather to give an account of developments in phenol chemistry in the last two decades.Features of this book:• Numerous phenolic systems have been covered in detail, e.g. phenolic propanoids.• The emphasis throughout has been on synthesis, on what can be achieved by the use of phenolic intermediates and in the construction of phenolic end products.• Many chapters enable the reader to refer to the original literature wherever possible.• Various chapters provide a fund of tutorial material and problems for undergraduate studies and further, which will encourage perusal of the literature. Some 2000 references to applied and academic papers are given.Phenols are ubiquitous substances and now it is more widely accepted that there are pros and cons connected with their usage. The pros for compounds are well-known and are illustrated by perennial panaceas such as aspirin, paracetamol, codeine, etc. The cons are less obvious because they are also materials deeply entrenched in our standard of living and in most cases inherent hazards have only recently come to light. The book will be of interest to postgraduate students in academic and industrial work.




Phenolic Compounds


Book Description

Phenolic compounds as a large class of metabolites found in plants have attracted attention since long time ago due to their properties and the hope that they will show beneficial health effects when taken as dietary supplements. This book presents the state of the art of some of the natural sources of phenolic compounds, for example, medicinal plants, grapes or blue maize, as well as the modern methods of extraction, quantification, and identification, and there is a special section discussing the treatment, removal, and degradation of phenols, an important issue in those phenols derived from the pharmaceutical or petrochemical industries.




Phenolic Compound Biochemistry


Book Description

These are just a few examples that illustrate the chemical diversity and use of phenolic compounds, the topic of ‘Phenolic Compound Biochemistry’. This book is written for researchers, instructors, advanced undergraduate students and beginning graduate students in the life sciences who wish to become more familiar with these and many other intriguing aspects of phenolic compounds. Topics covered include nomenclature, chemical properties, biosynthesis, including an up-to-date overview of the genetics controlling phenolic metabolism, isolation and characterization of phenolic compounds, phenolics used in plant defense, and the impact of phenolics on human health. The book is written in an accessible style, and assumes only basic knowledge of organic chemistry, biochemistry and cell physiology. More than 300 chemical structures and reaction schemes illustrate the text. Wilfred Vermerris is Associate Professor of Agronomy at the University of Florida Genetics Institute in Gainesville, FL. His research focuses on the genetic control of phenolic compounds that impact agro-industrial processing of crop plants. Ralph Nicholson is Professor of Botany and Plant Pathology at Purdue University in West Lafayette, IN. He is an expert on phenolic compounds involved in the plant’s defense against pathogenic fungi and bacteria.




Chemistry and Application of Phenolic Resins


Book Description

"The sciences as a whole are slowly but gradually drifting away from life and are only returning after adetour". Goethe Detours should be avoided. The picture we are presenting here of the current theory in phenolic resin chemistry and the technical application of phenolic resins is based on day-to-day experiences in research, pro4uction and marketing, however, with the background of economic relevance. This book, then, is not to be regarded as a systematic collection and evaluation of the literature, although the literature up to July, 1978 has generally been taken into consideration. The audience to which this book is directed is wide-ranging: chemists, engineers, marketing professionals and students. We show where the first fully synthetic polymers, phenolic resins, stand today and what their future iso Taking a look back over their development, one is only more deeply convinced that after a wide variety of adaptions, they still possess the tech nical and economic strengths which allow for their further market growth and with it, a full appreciation of their value. We would like to extend our gratitude to all friends and promotors, in particular to those who helped and encouraged us with advice and assistance. Andre Knop Walter Scheib Frankfurt, January 1979 Table of Contents Historical and Economic Development of Phenolic Resins 1. History . . . 1 1.1. 1.2. Market Position 5 References. . 8 Raw Materials . 10 2. 10 2.1. Phenols. . . 10 2.1.l. Physical Properties of Phenol .




Greene's Protective Groups in Organic Synthesis


Book Description

The Fourth Edition of Greene's Protective Groups in Organic Synthesis continues to be an indispensable reference for controlling the reactivity of the most common functional groups during a synthetic sequence. This new edition incorporates the significant developments in the field since publication of the third edition in 1998, including... New protective groups such as the fluorous family and the uniquely removable 2-methoxybenzenesulfonyl group for the protection of amines New techniques for the formation and cleavage of existing protective groups, with examples to illustrate each new technique Expanded coverage of the unexpected side reactions that occur with protective groups New chart covering the selective deprotection of silyl ethers 3,100 new references from the professional literature The content is organized around the functional group to be protected, and ranges from the simplest to the most complex and highly specialized protective groups.




Asymmetric Dearomatization Reactions


Book Description

The first comprehensive account of the rapidly growing field of asymmetric dearomatization reactions with a focus on catalytic methods. It introduces the concept of dearomatization and describes recent progress in asymmetric reaction procedures with different catalyst systems, such as organocatalysts, transition metal catalysts, and enzymes. Chapters on dearomatizations of electron-deficient aromatic rings, dearomatization reactions via transition metal-catalyzed cross-couplings as well as dearomatization strategies in the synthesis of complex natural products are also included. Written by pioneers in the field, this is a highly valuable source of information not only for professional synthetic chemists in academia and industry but also for all those are interested in asymmetric methodologies and organic synthesis in general.




Phenolic Resins Technology Handbook (2nd Revised Edition)


Book Description

Phenolic resins, also known as phenol–formaldehyde resins, are synthetic polymers that are produced from the reaction of phenol or substituted phenol with formaldehyde at high temperatures. These are widely used in wood adhesives, molding compounds, and laminates. The resins are flame-retardant, demonstrate high heat resistance, high tensile strength, and low toxicity, and generate low smoke. In the report, the phenolic resins market is segmented on the basis of product type, application, and region. Phenolic Resin Market size estimated to reach at USD 19.13 billion in 2026. Alongside, the market is anticipated to grow at a CAGR of 5.4% during the forecast period. The global phenolic resins market has experienced a notable growth and it has been projected that the global market will see stable growth during the forecast period. The high mechanical strengths, low toxicity, heat resistance, low smoke and other several properties has made the phenolic resins to make their use in the applications such as in laminations, wood adhesives, molding compound, construction, automobile and others. Growing demand of these applications has increased the production of phenolic resins to meet the current market demand. Also, phenolic resins is used in flame retardant which is very crucial for automobiles and aircrafts. This book basically deals with general reaction of phenols with aldehydes, the resoles, curing stages of resoles, kinetics of a stage reaction, chemistry of curing reactions, kinetics of the curing reaction, the novolacs, decomposition products of resites, acid cured resites, composition of technical resites, mechanisms of rubber vulcanization with phenolic resins, thermosetting alloy adhesives, vinyl phenolic structural adhesives, nitrile phenolic structural adhesives, phenolic resins in contact adhesives, chloroprene phenolic contact adhesives, nitrile phenolic contact adhesives, phenolic resins in pressure sensitive adhesives, rubber reinforcing resins, resorcinol formaldehyde latex systems, phenolic resin chemistry, bio-based phenolic resins, flexibilization of phenolic resins, floral foam (Phenolic Foam) with resin manufacturing, lignin-based phenol formaldehyde (LPF) resins, phenol formaldehyde resin, alkaline phenol formaldehyde resin, furfuryl alcohol phenol urea formaldehyde resin, phenol formaldehyde resin (Shell Sand Resin), phenol formaldehyde resin (Cold Box Resin), effluent treatment plant, standards and legislation, marketing of thermoset resins, process flow sheet, sample plant layout and photographs of machinery with supplier’s contact details. A total guide of phenolic resins and entrepreneurial success in one of today's most lucrative resin industry. This book is one-stop guide to one of the fastest growing sectors, where opportunities abound for manufacturers, retailers, and entrepreneurs. This is the only complete handbook on Phenolic resins.




Organic Polymer Chemistry


Book Description

This book deals with the organic chemistry of polymers which find technological use as adhesives, fibres, paints, plastics and rubbers. For the most part, only polymers which are of commercial significance are considered and the primary aim of the book is to relate theoretical aspects to industrial practice. The book is mainly intended for use by students in technical institutions and universities who are specializing in polymer science and by graduates who require an introduction to this field. Several excellent books have recently appeared dealing with the physical chemistry of polymers but the organic chemistry of polymers has not received so much attention. In recognition of this situation and because the two aspects of polymer chemistry are often taught separately, this book deals specifically with organic chemistry and topics of physical chemistry have been omitted. Also, in this way the book has been kept to a reasonable size. This is not to say that integration of the two areas of polymer science is undesirable; on the contrary, it is of the utmost importance that the inter-relationship should b~ appreciated. I wish to record my thanks to my colleagues with whom I have had many helpful discussions, particularly Mrs S. L. Radchenko. I also thank Miss E. Friesen for obtaining many books and articles on my behalf and Mr H. Harms for encouragement and assistance. I am also grateful to Mrs M. Stevens who skilfully prepared the manuscript. Department of Chemical and Metallurgical Technology, Ryerson Polytechnical Institute, K. J. S.




Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis


Book Description

Plant foods are an essential part of our daily diet and constitute one of the highest contributors to the world economy. These foods are rich in phenolic compounds, which play a significant role in maintaining our health. This textbook presents a comprehensive overview of the chemistry, biochemistry and analysis of phenolic compounds present in a variety of foods. The text can be used as a singular source of knowledge for plant food science and technology, covering all of the important chemical, biochemical and analytical aspects needed for a thorough understanding of phenolic antioxidants in foods. Phenolic Antioxidants In Foods: Chemistry, Biochemistry, and Analysis is comprised of three sections. The first section covers the basic concepts of antioxidants, their chemistry and their chemical composition in foods, providing a detailed introduction to the concept. The second section covers the biochemical aspects of phenolic antioxidants, including their biosynthetic pathways, biological effects and the molecular mechanism of antioxidant effects in the biological system. This section promotes an understanding of the fundamental biochemical reactions that take place in foods and after digestion and absorption. The third section covers the analytical chemistry used in the analysis of phenolic antioxidants in foods, including the basic analytical procedures, methods for analysis and chromatographic and spectroscopic analyses. This section is significant for aspiring food chemists and manufacturers to evaluate the nature and chemistry of phenolic antioxidants in foods. Featuring helpful quizzes, section summaries, and key chapter points, this textbook is the perfect learning tool for advanced chemistry undergraduates and post-graduates looking to gain a fundamental understanding of phenolic antioxidants in food products.




Phenolic Resins: A Century of Progress


Book Description

The legacy of Leo Hendrik Baekeland and his development of phenol formal- hyde resins are recognized as the cornerstone of the Plastics Industry in the early twentieth century, and phenolic resins continue to ?ourish after a century of robust growth. On July 13, 1907, Baekeland ?led his “heat and pressure” patent related to the processing of phenol formaldehyde resins and identi?ed their unique utility in a plethora of applications. The year 2010 marks the Centennial Year of the prod- tion of phenolic resins by Leo Baekeland. In 1910, Baekeland formed Bakelite GmbH and launched the manufacture of phenolic resins in Erkner in May 1910. In October 1910, General Bakelite began producing resins in Perth Amboy, New Jersey. Lastly, Baekeland collaborated with Dr. Takamine to manufacture phenolic resins in Japan in 1911. These events were instrumental in establishing the Plastics Industry and in tracing the identity to the brilliance of Dr. Leo Baekeland. Phenolic resins remain as a versatile resin system featuring either a stable, thermoplastic novolak composition that cures with a latent source of formaldehyde (hexa) or a heat reactive and perishable resole composition that cures thermally or under acidic or special basic conditions. Phenolic resins are a very large volume resin system with a worldwide volume in excess of 5 million tons/year, and its growth is related to the gross national product (GNP) growth rate globally.