The Chemistry of the Actinide and Transactinide Elements (Set Vol.1-6)


Book Description

The fourth edition of "The Chemistry of the Actinide and Transactinide Elements" comprises all chapters in volumes 1 through 5 of the third edition (published in 2006) plus a new volume 6. To remain consistent with the plan of the first edition, “ ... to provide a comprehensive and uniform treatment of the chemistry of the actinide [and transactinide] elements for both the nuclear technologist and the inorganic and physical chemist,” and to be consistent with the maturity of the field, the fourth edition is organized in three parts. The first group of chapters follows the format of the first and second editions with chapters on individual elements or groups of elements that describe and interpret their chemical properties. A chapter on the chemical properties of the transactinide elements follows. The second group, chapters 15-26, summarizes and correlates physical and chemical properties that are in general unique to the actinide elements, because most of these elements contain partially-filled shells of 5f electrons whether present as isolated atoms or ions, as metals, as compounds, or as ions in solution. The third group, chapters 27-39, focuses on specialized topics that encompass contemporary fields related to actinides in the environment, in the human body, and in storage or wastes. Two appendices at the end of volume 5 tabulate important nuclear properties of all actinide and transactinide isotopes. Volume 6 (Chapters 32 through 39) consists of new chapters that focus on actinide species in the environment, actinide waste forms, nuclear fuels, analytical chemistry of plutonium, actinide chalcogenide and hydrothermal synthesis of actinide compounds. The subject and author indices and list of contributors encompass all six volumes.




The Chemistry of the Actinide and Transactinide Elements (3rd ed., Volumes 1-5)


Book Description

The Chemistry of the Actinide and Transactinide Elements is a contemporary and definitive compilation of chemical properties of all of the actinide elements, especially of the technologically important elements uranium and plutonium, as well as the transactinide elements. In addition to the comprehensive treatment of the chemical properties of each element, ion, and compound from atomic number 89 (actinium) through to 109 (meitnerium), this multi-volume work has specialized and definitive chapters on electronic theory, optical and laser fluorescence spectroscopy, X-ray absorption spectroscopy, organoactinide chemistry, thermodynamics, magnetic properties, the metals, coordination chemistry, separations, and trace analysis. Several chapters deal with environmental science, safe handling, and biological interactions of the actinide elements. The Editors invited teams of authors, who are active practitioners and recognized experts in their specialty, to write each chapter and have endeavoured to provide a balanced and insightful treatment of these fascinating elements at the frontier of the periodic table. Because the field has expanded with new spectroscopic techniques and environmental focus, the work encompasses five volumes, each of which groups chapters on related topics. All chapters represent the current state of research in the chemistry of these elements and related fields.




Rare-Earth Element Biochemistry: Characterization and Applications of Lanthanide-Binding Biomolecules


Book Description

Rare-Earth Element Biochemistry: Characterization and Applications of Lanthanide-Binding Biomolecules, Volume 651 in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Chapters in this new release include Spectrophotometric methods to probe the solution chemistry of lanthanide complexes with macromolecules, Determination of affinities of lanthanide-binding proteins using chelator-buffered titrations, Electron Paramagnetic Resonance of Lanthanides, Characterization of lanthanoid binding proteins using NMR spectroscopy, Macromolecular crystallography for f-element complex characterization, Infrared spectroscopy probes ion binding geometries, Predicting lanthanide coordination structures in solution with molecular simulation, and much more. Additional sections cover the Characteristics of Gd(III) spin labels for the study of protein conformations, Lanthanide-based resonance energy transfer biosensors for live-cell applications, Yttrium-86 PET imaging, Aqueous Chemistry of the Smallest Rare Earth: Comprehensive Characterization of Radioactive and Non-radioactive Scandium Complexes for Biological Applications, and In vitro selection and application of lanthanide-dependent DNAzymes. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Methods in Enzymology series







Practical Applications of Medical Geology


Book Description

This edited volume provides a framework for integrating methods and information drawn from geological and medical sciences and provides case studies in medical geology to illustrate the usefulness of this framework for crafting environmental and public health policies related to natural materials. The relevance of medical geology research to policy decisions is a topic rarely discussed, and this volume attempts to be a unique source for researchers and policy makers in the field of medical geology in addressing this gap in practical medical geology applications. The book's four sections establish this framework in detail using risk assessment, case studies, data analyses and specific medical geology techniques. Following an introduction to medical geology in the context of risk assessment and risk management, the second section discusses specific methods used in medical geology in the categories of geoscience, biomedicine, and data sources. The third section discusses the medical geology of natural materials, energy use, and environmental and workplace impacts. This section includes specific case studies in medical geology, and describes how the methods and data from the previous section are used in a medical geology analysis. The fourth section includes a guide to the medical geology literature and provides some examples of medical geology programs in Asia and Africa.







Chemical Reactions and Processes Under Flow Conditions


Book Description

On the contrary, flow continuous processes present a series of advantages leading to new ways to synthesise chemical products.




The Chemistry of the Actinide Elements


Book Description

The. first edition of this work appeared almost thirty years ago, when, as we can see in retrospect, the study of the actinide elements was in its first bloom. Although the broad features of the chemistry of the actinide elements were by then quite weil delineated, the treatment of the subject in the first edition was of necessity largely descriptive in nature. A detailed understanding ofthe chemical consequences of the characteristic presence of 5f electrons in most of the members ofthe actinide se ries was still for the future, and many ofthe systematic features ofthe actinide elements were only dimly apprehended. In the past thirty years all this has changed. The application of new spectroscopic techniques, which came into general use during this period, and new theoretical insights, which came from a better understanding of chemical bonding, inorganic chemistry, and solid state phenomena, were among the important factors that led to a great expansion and maturation in actinide element research and a large number of new and important findings. The first edition consisted of aserial description of the individual actinide elements, with a single chapter devoted to the six heaviest elements (lawrencium, the heaviest actinide, was yet to be discovered). Less than 15 % of the text was devoted to a consideration of the systematics of the actinide elements.




The Chemistry of the Actinide Elements


Book Description

The first edition of this work appeared almost thirty years ago, when, as we can see in retrospect, the study of the actinide elements was in its first bloom. Although the broad features of the chemistry of the actinide elements were by then quite well delineated, the treatment of the subject in the first edition was of necessity largely descriptive in nature. A detailed understanding of the chemical consequences of the characteristic presence of Sf electrons in most of the members of the actinide series was still for the future, and many of the systematic features of the actinide elements were only dimly apprehended. In the past thirty years all this has changed. The application of new spectroscopic techniques, which came into general use during this period, and new theoretical insights, which came from a better understanding of chemical bonding, inorganic chemistry, and solid state phenomena, were among the important factors that led to a great expansion and maturation in actinide element research and a large number of new and important findings. The first edition consisted of a serial description of the individual actinide elements, with a single chapter devoted to the six heaviest elements (lawrencium, the heaviest actinide, was yet to be discovered). Less than 15 % of the text was devoted to a consideration of the systematics of the actinide elements.




Bismuth-Mediated Organic Reactions


Book Description

Bismuth Catalysts in Aqueous Media, by Shū Kobayashi, Masaharu Ueno and Taku Kitanosono.- Pentavalent Organobismuth Reagents in Organic Synthesis: Alkylation, Alcohol Oxidation and Cationic Photopolymerization , by Yoshihiro Matano.- Environmentally Friendly Organic Synthesis Using Bismuth(III) Compounds, by Scott W. Krabbe and Ram S. Mohan.- Bismuth-Catalyzed Addition of Silyl Nucleophiles to Carbonyl Compounds and Imines, by Thierry Ollevier.- Bismuth Salts in Catalytic Alkylation Reactions, by Magnus Rueping and Boris J. Nachtsheim.- New Applications for Bismuth(III) Salts in Organic Synthesis: From Bulk Chemicals to Steroid and Terpene Chemistry, by J. A. R. Salvador, S. M. Silvestre, R. M. A. Pinto, R. C. Santos and C. Le Roux.- Cationic Bismuth-Catalyzed Hydroamination and Direct Substitution of the Hydroxy Group in Alcohols with Amides, by Shigeki Matsunaga and Masakatsu Shibasaki.- Transition-Metal Catalyzed C–C Bond Formation Using Organobismuth Compounds, by Shigeru Shimada and Maddali L. N. Rao.- Bismuth(III) Salts as Synthetic Tools in Organic Transformations, by J. S. Yadav, Aneesh Antony and Basi V. Subba Reddy.