Combinatorics and topology related to involutions in Coxeter groups


Book Description

This dissertation consists of three papers in combinatorial Coxeter group theory. A Coxeter group is a group W generated by a set S, where all relations can be derived from the relations s2 = e for all s ?? S, and (ss?)m(s,s?) = e for some pairs of generators s ? s? in S, where e ?? W is the identity element and m(s, s?) is an integer satisfying that m(s, s?) = m(s?, s) ? 2. Two prominent examples of Coxeter groups are provided by the symmetric group Sn (i.e., the set of permutations of {1, 2, . . . , n}) and finite reflection groups (i.e., finite groups generated by reflections in some real euclidean space). There are also important infinite Coxeter groups, e.g., affine reflection groups. Every Coxeter group can be equipped with various natural partial orders, the most important of which is the Bruhat order. Any subset of a Coxeter group can then be viewed as an induced subposet. In Paper A, we study certain posets of this kind, namely, unions of conjugacy classes of involutions in the symmetric group. We obtain a complete classification of the posets that are pure (i.e., all maximal chains have the same length). In particular, we prove that the set of involutions with exactly one fixed point is pure, which settles a conjecture of Hultman in the affirmative. When the posets are pure, we give their rank functions. We also give a short, new proof of the EL-shellability of the set of fixed-point-free involutions, established by Can, Cherniavsky, and Twelbeck. Paper B also deals with involutions in Coxeter groups. Given an involutive automorphism ? of a Coxeter system (W, S), let ?(?) = {w ?? W | ?(w) = w?1} be the set of twisted involutions. In particular, ?(id) is the set of ordinary involutions in W. It is known that twisted involutions can be represented by words in the alphabet = { | s ?? S}, called -expressions. If ss? has finite order m(s, s?), let a braid move be the replacement of ? ? by ? ? ?, both consisting of m(s, s?) letters. We prove a word property for ?(?), for any Coxeter system (W, S) with any ?. More precisely, we provide a minimal set of moves, easily determined from the Coxeter graph of (W, S), that can be added to the braid moves in order to connect all reduced -expressions for any given w ?? ?(?). This improves upon a result of Hamaker, Marberg, and Pawlowski, and generalises similar statements valid in certain types due to Hu, Zhang, Wu, and Marberg. In Paper C, we investigate the topology of (the order complexes of) certain posets, called pircons. A special partial matching (SPM) on a poset is a matching of the Hasse diagram satisfying certain extra conditions. An SPM without fixed points is precisely a special matching as defined by Brenti. Let a pircon be a poset in which every non-trivial principal order ideal is finite and admits an SPM. Thus pircons generalise Marietti’s zircons. Our main result is that every open interval in a pircon is a PL ball or a PL sphere. An important subset of ?(?) is the set ??(?) = {?(w?1)w | w ?? W} of twisted identities. We prove that if ? does not flip any edges with odd labels in the Coxeter graph, then ??(?), with the order induced by the Bruhat order on W, is a pircon. Hence, its open intervals are PL balls or spheres, which confirms a conjecture of Hultman. It is also demonstrated that Bruhat orders on Rains and Vazirani’s quasiparabolic W-sets (under a boundedness assumption) form pircons. In particular, this applies to all parabolic quotients of Coxeter groups.




Representations of Reductive Groups


Book Description

Over the last forty years, David Vogan has left an indelible imprint on the representation theory of reductive groups. His groundbreaking ideas have lead to deep advances in the theory of real and p-adic groups, and have forged lasting connections with other subjects, including number theory, automorphic forms, algebraic geometry, and combinatorics. Representations of Reductive Groups is an outgrowth of the conference of the same name, dedicated to David Vogan on his 60th birthday, which took place at MIT on May 19-23, 2014. This volume highlights the depth and breadth of Vogan's influence over the subjects mentioned above, and point to many exciting new directions that remain to be explored. Notably, the first article by McGovern and Trapa offers an overview of Vogan's body of work, placing his ideas in a historical context. Contributors: Pramod N. Achar, Jeffrey D. Adams, Dan Barbasch, Manjul Bhargava, Cédric Bonnafé, Dan Ciubotaru, Meinolf Geck, William Graham, Benedict H. Gross, Xuhua He, Jing-Song Huang, Toshiyuki Kobayashi, Bertram Kostant, Wenjing Li, George Lusztig, Eric Marberg, William M. McGovern, Wilfried Schmid, Kari Vilonen, Diana Shelstad, Peter E. Trapa, David A. Vogan, Jr., Nolan R. Wallach, Xiaoheng Wang, Geordie Williamson




Algebraic Combinatorics and the Monster Group


Book Description

Covering, arguably, one of the most attractive and mysterious mathematical objects, the Monster group, this text strives to provide an insightful introduction and the discusses the current state of the field. The Monster group is related to many areas of mathematics, as well as physics, from number theory to string theory. This book cuts through the complex nature of the field, highlighting some of the mysteries and intricate relationships involved. Containing many meaningful examples and a manual introduction to the computer package GAP, it provides the opportunity and resources for readers to start their own calculations. Some 20 experts here share their expertise spanning this exciting field, and the resulting volume is ideal for researchers and graduate students working in Combinatorial Algebra, Group theory and related areas.




Mathematical Reviews


Book Description




The Isomorphism Problem in Coxeter Groups


Book Description

The book is the first to give a comprehensive overview of the techniques and tools currently being used in the study of combinatorial problems in Coxeter groups. It is self-contained, and accessible even to advanced undergraduate students of mathematics.The primary purpose of the book is to highlight approximations to the difficult isomorphism problem in Coxeter groups. A number of theorems relating to this problem are stated and proven. Most of the results addressed here concern conditions which can be seen as varying degrees of uniqueness of representations of Coxeter groups. Throughout the investigation, the readers are introduced to a large number of tools in the theory of Coxeter groups, drawn from dozens of recent articles by prominent researchers in geometric and combinatorial group theory, among other fields. As the central problem of the book may in fact be solved soon, the book aims to go further, providing the readers with many techniques that can be used to answer more general questions. The readers are challenged to practice those techniques by solving exercises, a list of which concludes each chapter.




Generalised Ramsey numbers and Bruhat order on involutions


Book Description

This thesis consists of two papers within two different areas of combinatorics. Ramsey theory is a classic topic in graph theory, and Paper A deals with two of its most fundamental problems: to compute Ramsey numbers and to characterise critical graphs. More precisely, we study generalised Ramsey numbers for two sets ?1 and ?2 of cycles. We determine, in particular, all generalised Ramsey numbers R(?1, ?2) such that ?1 or ?2 contains a cycle of length at most 6, or the shortest cycle in each set is even. This generalises previous results of Erdös, Faudree, Rosta, Rousseau, and Schelp. Furthermore, we give a conjecture for the general case. We also characterise many (?1, ?2)-critical graphs. As special cases, we obtain complete characterisations of all (Cn,C3)-critical graphs for n ? 5, and all (Cn,C5)-critical graphs for n ? 6. In Paper B, we study the combinatorics of certain partially ordered sets. These posets are unions of conjugacy classes of involutions in the symmetric group Sn, with the order induced by the Bruhat order on Sn. We obtain a complete characterisation of the posets that are graded. In particular, we prove that the set of involutions with exactly one fixed point is graded, which settles a conjecture of Hultman in the affirmative. When the posets are graded, we give their rank functions. We also give a short, new proof of the EL-shellability of the set of fixed-point-free involutions, recently proved by Can, Cherniavsky, and Twelbeck.




The Geometry and Topology of Coxeter Groups


Book Description

The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.




Open Problems in Algebraic Combinatorics


Book Description

In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.




Symmetric Functions, Schubert Polynomials and Degeneracy Loci


Book Description

This text grew out of an advanced course taught by the author at the Fourier Institute (Grenoble, France). It serves as an introduction to the combinatorics of symmetric functions, more precisely to Schur and Schubert polynomials. Also studied is the geometry of Grassmannians, flag varieties, and especially, their Schubert varieties. This book examines profound connections that unite these two subjects. The book is divided into three chapters. The first is devoted to symmetricfunctions and especially to Schur polynomials. These are polynomials with positive integer coefficients in which each of the monomials correspond to a Young tableau with the property of being ``semistandard''. The second chapter is devoted to Schubert polynomials, which were discovered by A. Lascoux andM.-P. Schutzenberger who deeply probed their combinatorial properties. It is shown, for example, that these polynomials support the subtle connections between problems of enumeration of reduced decompositions of permutations and the Littlewood-Richardson rule, a particularly efficacious version of which may be derived from these connections. The final chapter is geometric. It is devoted to Schubert varieties, subvarieties of Grassmannians, and flag varieties defined by certain incidenceconditions with fixed subspaces. This volume makes accessible a number of results, creating a solid stepping stone for scaling more ambitious heights in the area. The author's intent was to remain elementary: The first two chapters require no prior knowledge, the third chapter uses some rudimentary notionsof topology and algebraic geometry. For this reason, a comprehensive appendix on the topology of algebraic varieties is provided. This book is the English translation of a text previously published in French.




Problems on Mapping Class Groups and Related Topics


Book Description

The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.