Introduction to Compilers and Language Design


Book Description

A compiler translates a program written in a high level language into a program written in a lower level language. For students of computer science, building a compiler from scratch is a rite of passage: a challenging and fun project that offers insight into many different aspects of computer science, some deeply theoretical, and others highly practical. This book offers a one semester introduction into compiler construction, enabling the reader to build a simple compiler that accepts a C-like language and translates it into working X86 or ARM assembly language. It is most suitable for undergraduate students who have some experience programming in C, and have taken courses in data structures and computer architecture.




Introduction to Compilers and Language Design


Book Description

A compiler translates a program written in a high level language into a program written in a lower level language. For students of computer science, building a compiler from scratch is a rite of passage: a challenging and fun project that offers insight into many different aspects of computer science, some deeply theoretical, and others highly practical. This book offers a one semester introduction into compiler construction, enabling the reader to build a simple compiler that accepts a C-like language and translates it into working X86 or ARM assembly language. It is most suitable for undergraduate students who have some experience programming in C, and have taken courses in data structures and computer architecture.




Engineering a Compiler


Book Description

This entirely revised second edition of Engineering a Compiler is full of technical updates and new material covering the latest developments in compiler technology. In this comprehensive text you will learn important techniques for constructing a modern compiler. Leading educators and researchers Keith Cooper and Linda Torczon combine basic principles with pragmatic insights from their experience building state-of-the-art compilers. They will help you fully understand important techniques such as compilation of imperative and object-oriented languages, construction of static single assignment forms, instruction scheduling, and graph-coloring register allocation. - In-depth treatment of algorithms and techniques used in the front end of a modern compiler - Focus on code optimization and code generation, the primary areas of recent research and development - Improvements in presentation including conceptual overviews for each chapter, summaries and review questions for sections, and prominent placement of definitions for new terms - Examples drawn from several different programming languages




Modern Compiler Implementation in C


Book Description

This new, expanded textbook describes all phases of a modern compiler: lexical analysis, parsing, abstract syntax, semantic actions, intermediate representations, instruction selection via tree matching, dataflow analysis, graph-coloring register allocation, and runtime systems. It includes good coverage of current techniques in code generation and register allocation, as well as functional and object-oriented languages, that are missing from most books. In addition, more advanced chapters are now included so that it can be used as the basis for a two-semester or graduate course. The most accepted and successful techniques are described in a concise way, rather than as an exhaustive catalog of every possible variant. Detailed descriptions of the interfaces between modules of a compiler are illustrated with actual C header files. The first part of the book, Fundamentals of Compilation, is suitable for a one-semester first course in compiler design. The second part, Advanced Topics, which includes the advanced chapters, covers the compilation of object-oriented and functional languages, garbage collection, loop optimizations, SSA form, loop scheduling, and optimization for cache-memory hierarchies.




Principles of Compilers


Book Description

"Principles of Compilers: A New Approach to Compilers Including the Algebraic Method" introduces the ideas of the compilation from the natural intelligence of human beings by comparing similarities and differences between the compilations of natural languages and programming languages. The notation is created to list the source language, target languages, and compiler language, vividly illustrating the multilevel procedure of the compilation in the process. The book thoroughly explains the LL(1) and LR(1) parsing methods to help readers to understand the how and why. It not only covers established methods used in the development of compilers, but also introduces an increasingly important alternative — the algebraic formal method. This book is intended for undergraduates, graduates and researchers in computer science. Professor Yunlin Su is Head of the Research Center of Information Technology, Universitas Ma Chung, Indonesia and Department of Computer Science, Jinan University, Guangzhou, China. Dr. Song Y. Yan is a Professor of Computer Science and Mathematics at the Institute for Research in Applicable Computing, University of Bedfordshire, UK and Visiting Professor at the Massachusetts Institute of Technology and Harvard University, USA.




Modern Compiler Design


Book Description

"Modern Compiler Design" makes the topic of compiler design more accessible by focusing on principles and techniques of wide application. By carefully distinguishing between the essential (material that has a high chance of being useful) and the incidental (material that will be of benefit only in exceptional cases) much useful information was packed in this comprehensive volume. The student who has finished this book can expect to understand the workings of and add to a language processor for each of the modern paradigms, and be able to read the literature on how to proceed. The first provides a firm basis, the second potential for growth.




Compiler Construction


Book Description

A refreshing antidote to heavy theoretical tomes, this book is a concise, practical guide to modern compiler design and construction by an acknowledged master. Readers are taken step-by-step through each stage of compiler design, using the simple yet powerful method of recursive descent to create a compiler for Oberon-0, a subset of the author's Oberon language. A disk provided with the book gives full listings of the Oberon-0 compiler and associated tools. The hands-on, pragmatic approach makes the book equally attractive for project-oriented courses in compiler design and for software engineers wishing to develop their skills in system software.




Modern Compiler Implementation in ML


Book Description

This new, expanded textbook describes all phases of a modern compiler: lexical analysis, parsing, abstract syntax, semantic actions, intermediate representations, instruction selection via tree matching, dataflow analysis, graph-coloring register allocation, and runtime systems. It includes good coverage of current techniques in code generation and register allocation, as well as functional and object-oriented languages, that are missing from most books. In addition, more advanced chapters are now included so that it can be used as the basis for two-semester or graduate course. The most accepted and successful techniques are described in a concise way, rather than as an exhaustive catalog of every possible variant. Detailed descriptions of the interfaces between modules of a compiler are illustrated with actual C header files. The first part of the book, Fundamentals of Compilation, is suitable for a one-semester first course in compiler design. The second part, Advanced Topics, which includes the advanced chapters, covers the compilation of object-oriented and functional languages, garbage collection, loop optimizations, SSA form, loop scheduling, and optimization for cache-memory hierarchies.




A Practical Approach to Compiler Construction


Book Description

This book provides a practically-oriented introduction to high-level programming language implementation. It demystifies what goes on within a compiler and stimulates the reader's interest in compiler design, an essential aspect of computer science. Programming language analysis and translation techniques are used in many software application areas. A Practical Approach to Compiler Construction covers the fundamental principles of the subject in an accessible way. It presents the necessary background theory and shows how it can be applied to implement complete compilers. A step-by-step approach, based on a standard compiler structure is adopted, presenting up-to-date techniques and examples. Strategies and designs are described in detail to guide the reader in implementing a translator for a programming language. A simple high-level language, loosely based on C, is used to illustrate aspects of the compilation process. Code examples in C are included, together with discussion and illustration of how this code can be extended to cover the compilation of more complex languages. Examples are also given of the use of the flex and bison compiler construction tools. Lexical and syntax analysis is covered in detail together with a comprehensive coverage of semantic analysis, intermediate representations, optimisation and code generation. Introductory material on parallelisation is also included. Designed for personal study as well as for use in introductory undergraduate and postgraduate courses in compiler design, the author assumes that readers have a reasonable competence in programming in any high-level language.




Compiler Design


Book Description

While compilers for high-level programming languages are large complex software systems, they have particular characteristics that differentiate them from other software systems. Their functionality is almost completely well-defined - ideally there exist complete precise descriptions of the source and target languages. Additional descriptions of the interfaces to the operating system, programming system and programming environment, and to other compilers and libraries are often available. The book deals with the optimization phase of compilers. In this phase, programs are transformed in order to increase their efficiency. To preserve the semantics of the programs in these transformations, the compiler has to meet the associated applicability conditions. These are checked using static analysis of the programs. In this book the authors systematically describe the analysis and transformation of imperative and functional programs. In addition to a detailed description of important efficiency-improving transformations, the book offers a concise introduction to the necessary concepts and methods, namely to operational semantics, lattices, and fixed-point algorithms. This book is intended for students of computer science. The book is supported throughout with examples, exercises and program fragments.