The Design and Synthesis of Benzodithiophene-containing Poly(arylene Ethynylene)s


Book Description

In Chapter 1, we provide an overview of the properties and applications of conjugated polymers, with a particular focus on poly(arylene ethynylene)s. We discuss the synthesis and photophysical properties of poly(arylene ethynylene)s, as well as their behavior in the solid state and at the air-water interface. We also provide a brief overview of the synthesis and properties of conjugated polymer networks and nanoparticles of poly(arylene ethynylene)s. Finally, we discuss the synthesis of benzodithiophene and benzodithiophene-containing conjugated polymers and poly(arylene ethynylene)s. In Chapter 2, we describe the design and synthesis of amphiphilic benzodithiophene-containing poly(arylene ethynylene)s for the synthesis of 2D-conjugated 2D polymers. We explore the behavior of the 1D-conjguated linear polymers at the air-water interface of a Langmuir- Blodgett trough, and describe our synthetic efforts toward the cross-polymerization of these polymers into 2D-conjugated 2D polymers. In Chapter 3, we explore the synthesis of conjugated polymer networks of benzodithiophene-containing poly(arylene ethynylene)s via the electrochemical and chemical crosslinking of two different 1 D-conjugated precursor polymers. We describe the characterization of the conjugated polymer network thin films and bulk materials and discuss the differences in the material properties depending on the starting polymer. In Chapter 4, we describe the synthesis and characterization of a series of benzodithiophene-containing poly(arylene ethynylene)s and poly(arylene butadiynylene)s for magneto-optical applications.




Design and Synthesis of Conjugated Polymers


Book Description

This first systematic compilation of synthesis methods for different classes of polymers describes well-tested and reproducible procedures, thus saving time, money and chemicals. Each chapter presents the latest method for a specific class of conjugated polymers with a particular emphasis on the design aspects for organo-electronic applications. In this concise and practically oriented manner, readers are introduced to the strategies of influencing and controlling the polymer properties with respect to their use in the desired device. This style of presentation quickly helps researchers in their daily lab work and prevents them from reinventing the wheel over and over again.




Alternating Copolymers


Book Description

Examination of the early literature attests to the fact that the study of copolymerization was initiated when polymer science was in its infancy. It has continued to grow to a subject of major importance and has been a source of interest to both academic and industrialist alike. The wide spectrum of structures and properties available in the statistical copolymer has made this a fruitful field of exploration, but one particular and more restricted form which has held its own fascination for many is the limiting case of the strictly alternating copolymer. This is formed, in the ideal situation, when two monomers in a reaction mixture add consecutively to create a polymer chain with a regular {ABABAB} structure, irrespective of the monomer feed ratio. When this happens the resulting copolymer will always have the same composition, a feature which can be advantageous but also somewhat restrictive, as the ability to vary the properties is then limited. Within a series entitled Speciality Polymers it seems appropriate then to deal with this subject, particularly as no previous attempt has been made to draw together the various facets of alternating copolymerization into one volume. It also seems timely to present a more unified picture of the subject which will also illustrate the progress made.




Main Group Strategies towards Functional Hybrid Materials


Book Description

Showcases the highly beneficial features arising from the presence of main group elements in organic materials, for the development of more sophisticated, yet simple advanced functional materials Functional organic materials are already a huge area of academic and industrial interest for a host of electronic applications such as Organic Light-Emitting Diodes (OLEDs), Organic Photovoltaics (OPVs), Organic Field-Effect Transistors (OFETs), and more recently Organic Batteries. They are also relevant to a plethora of functional sensory applications. This book provides an in-depth overview of the expanding field of functional hybrid materials, highlighting the incredibly positive aspects of main group centers and strategies that are furthering the creation of better functional materials. Main Group Strategies towards Functional Hybrid Materials features contributions from top specialists in the field, discussing the molecular, supramolecular and polymeric materials and applications of boron, silicon, phosphorus, sulfur, and their higher homologues. Hypervalent materials based on the heavier main group elements are also covered. The structure of the book allows the reader to compare differences and similarities between related strategies for several groups of elements, and to draw crosslinks between different sections. The incorporation of main group elements into functional organic materials has emerged as an efficient strategy for tuning materials properties for a wide range of practical applications Covers molecular, supramolecular and polymeric materials featuring boron, silicon, phosphorus, sulfur, and their higher homologues Edited by internationally leading researchers in the field, with contributions from top specialists Main Group Strategies towards Functional Hybrid Materials is an essential reference for organo-main group chemists pursuing new advanced functional materials, and for researchers and graduate students working in the fields of organic materials, hybrid materials, main group chemistry, and polymer chemistry.




Diradicaloids


Book Description

π-Conjugated molecules with an even number of π-electrons usually have a closed-shell ground state. However, recent studies have demonstrated that a certain type of molecules could show open-shell singlet ground state and display diradical-like (diradicaloid) behavior. Their electronic structure can be understood in terms of the “diradical character” and “aromaticity” concepts. They display very different electronic properties from traditional closed-shell π-conjugated molecules and could be used as next-generation molecular materials. This book provides a comprehensive review on the chemistry, physics, and material applications of open-shell singlet diradicaloids. Particularly, it elaborates the fundamental structure–diradical character–electronic property relationships both theoretically and experimentally. The book has been written by leading scientists in the field from Japan, Germany, Spain, Italy, China, and Singapore.




The Stille Reaction


Book Description

Die Stille-Reaktion ist eine der sehr wenigen Reaktionen, in denen unter milden Bedingungen Kohlenstoff-Kohlenstoff-Bindungen geknüpft werden können. Man verwendet die Reaktion häufig in der Synthese komplizierter Moleküle zur Verknüpfung größerer Molekülbausteine. Die Autoren diskutieren vom präparativen Standpunkt aus Grenzen, Einflüsse, strukturelle Effekte und die Wahl der geeigneten Reaktionsbedingungen. Mit ausführlichen Vorschriften und vielen Beispielen. (11/98)




Optically Active Polymers


Book Description

This book presents a systematic study of the synthesis of optically active polymers, discussing in detail the syntheses of three different types of optically active polymers from helical polymers, dendronized polymers and other types of polymeric compounds. It also explains the syntheses of optically active azoaromatic and carbazole-containing azoaromatic polymers and copolymers; optically active benzodithiophene; and optically active porphyrin derivatives. The final chapter discusses different properties of optically active polymers such as nonlinear optical properties, chiroptical properties, vapochromic behaviour, absorption and emission properties, fabrication and photochromic properties. The intrinsic details of various properties of optically active polymers will offer a valuable resource for researchers and industry personnel actively engaged in application-oriented investigations.




Green Polymerization Methods


Book Description

Designing polymers and developing polymerization processes that are safe, prevent pollution, and are more efficient in the use of materials and engergy is an important topic in modern chemistry. Today, green polymer research can be seen increasingly in academia nd industry. It tackles all aspects of polymers and polymerization - everything from chemical feedstocks, synthetic pathways, and reaction media to the nature of the final polymer as related to its inherent nontoxicity or degradability. This book summarizes and evaluates the latest developments in green polymerization methods. Specifically, new catalytic methods and processes which incorporate renewable resources will be discussed by leading experts in the field of polymer chemistry. This book is a must-have for Polymer Chemists, Chemists Working with/on Organometallics, Biochemists, Physical Chemists, Chemical Engineers, Biotechnologists, Materials Scientists, and Catalytic Chemists.




Covalent Organic Frameworks


Book Description

Rational synthesis of extended arrays of organic matter in bulk, solution, crystals, and thin films has always been a paramount goal of chemistry. The classical synthetic tools to obtain long-range regularity are, however, limited to noncovalent interactions, which usually yield structurally more random products. Hence, a combination of porosity and regularity in organic covalently bonded materials requires not only the design of molecular building blocks that allow for growth into a nonperturbed, regular geometry but also a condensation mechanism that progresses under reversible, thermodynamic, self-optimizing conditions. Covalent organic frameworks (COFs), a variety of 2D crystalline porous materials composed of light elements, resemble an sp2-carbon-based graphene sheet but have a different molecular skeleton formed by orderly linkage of building blocks to constitute a flat organic sheet. COFs have attracted considerable attention in the past decade because of their versatile applications in gas storage and separation, catalysis, sensing, drug delivery, and optoelectronic materials development. Compared to other porous materials, COFs allow for atomically precise control of their architectures by changing the structure of their building blocks, whereby the shapes and sizes of their pores can be well-tuned. Covalent Organic Frameworks is a compilation of different topics in COF research, from COF design and synthesis, crystallization, and structural linkages to the theory of gas sorption and various applications of COFs, such as heterogeneous catalysts, energy storage (e.g., semiconductors and batteries), and biomedicine. This handbook will appeal to anyone interested in nanotechnology and new materials of gas adsorption and storage, heterogeneous catalysts, electronic devices, and biomedical devices.




Metal-Organic Framework Materials


Book Description

Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc