The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells


Book Description

The harvesting of solar energy using photovoltaics has the potential to provide a significant portion of the world's energy. For this to happen, the cost per watt of power produced from photovoltaics must decrease. Excitonic solar cells, including organic solar cells and dye-sensitized solar cells, have the potential to provide the necessary cost savings. However, power conversion efficiencies must be improved before these devices can become practical. This dissertation describes the implementation of several strategies to improve the efficiency of organic polymer and dye-sensitized solar cells. Chapter 1 provides an introduction to current research on excitonic solar cells with a focus on organic polymer and dye-sensitized cells. The detailed mechanisms of photocurrent generation in each type of cell are discussed, and the factors that determine efficiencies are outlined. In addition, an overview of the progress over the last decade in research on polymer photovoltaics is given. Finally, the future prospects for achieving high efficiency devices are described. Chapter 2 details a strategy for controlling the morphology of photovoltaic blends of conjugated polymers and small molecule perylene diimide dyes. Blends of these two materials are subject to excessive phase separation that decreases photovoltaic performance. The development of compatibilizers that alleviate this phase separation is described. A diblock copolymer of poly(3-hexylthiophene) (P3HT) and a perylene diimide (PDI) side chain polymer is an effective compatibilizer. Addition of this material to blends of P3HT and PDI suppresses the formation of micron-sized crystals and results in a 50% improvement in solar cell efficiency. The synthesis of a diblock copolymer of poly(3-(4-octylphenyl)thiophene) and the PDI side chain polymer is also described. This material functions as a compatibilizer, but does not allow for improved photovoltaic efficiency. Chapter 3 describes the synthesis and characterization of a low bandgap conjugated polymer with thermally removable solubilizing groups. Following solution-based deposition of thin films of this polymer, heat can induce the cleavage and evaporation of the alkyl solubilizing chains, resulting in an insoluble film. The optical properties change considerably during this process: the bandgap decreases, and the absorption coefficient increases dramatically. These properties were exploited to fabricate bilayers of the low bandgap material and a highly fluorescent commercial polymer. Fluorescence resonance energy transfer from the fluorescent material to the low bandgap polymer is efficient over 30 nm. Such a scheme could be utilized to overcome the exciton diffusion bottleneck in layered polymer solar cells. In chapter 4, the synthesis of novel n-type polymers based on PDI monomers is described. With appropriate substitution of alkyl chains, highly rigid perylene benzimidazole ladder polymers can be made soluble in common organic solvents. These materials have exceptionally low-lying LUMOs and possess unusual fluorescence properties. Fully planar perylene ethynylene polymers are also synthesized and characterized. Despite their planarity, data from absorbance and fluorescence spectra suggest that the PDI units in these polymers are poorly coupled electronically. X-Ray diffraction shows that the [pi]-stacking distance varies in these materials depending on the nature of the solubilizing groups and can be decreased through solvent annealing. Chapter 5 describes how light harvesting can be improved in dye-sensitized solar cells by adding a second dye that transfers energy to the primary sensitizing dye. In liquid cells, incorporation of a PDI dye in the liquid electrolyte solution results in a 28% improvement in power conversion efficiency. Energy transfer is at least 50% efficient despite significant quenching of the perylene dye's fluorescence by the iodide redox couple. Efforts to employ energy transfer in solid-state dye-sensitized solar cells are also described. This is more challenging because the solid-state hole transporter is an excellent quencher of fluorescent dyes. However, it is shown that this quenching can be prevented by self-assembling dyes such as fluorescein 548 into a poly(propyleneimine) dendrimer. Unfortunately, processing conditions that allow the dendrimer/dye conjugates to penetrate the pores of the cell's titania films have not yet been found.




Organic Solar Cells


Book Description

Organic photovoltaic (OPV) cells have the potential to make a significant contribution to the increasing energy needs of the future. In this book, 15 chapters written by selected experts explore the required characteristics of components present in an OPV device, such as transparent electrodes, electron- and hole-conducting layers, as well as electron donor and acceptor materials. Design, preparation, and evaluation of these materials targeting highest performance are discussed. This includes contributions on modeling down to the molecular level to device-level electrical and optical testing and modeling, as well as layer morphology control and characterization. The integration of the different components in device architectures suitable for mass production is described. Finally, the technical feasibility and economic viability of large-scale manufacturing using fast inexpensive roll-to-roll deposition technologies is assessed.




Organic Solar Cells


Book Description

Organic Solar Cells A timely and singular resource on the latest advances in organic photovoltaics Organic photovoltaics are gaining widespread attention due to their solution processability, tunable electronic properties, low temperature manufacture, and cheap and light materials. Their wide range of potential applications may result in significant near-term commercialization of the technology. In Organic Solar Cells: Materials Design, Technology and Commercialization, renowned scientist Dr. Liming Ding delivers a comprehensive exploration of organic solar cells, including discussions of their key materials, mechanisms, molecular designs, stability features, and applications. The book presents the most state-of-the-art developments in the field alongside fulsome treatments of the commercialization potential of various organic solar cell technologies. The author also provides: Thorough introductions to fullerene acceptors, polymer donors, and non-fullerene small molecule acceptors Comprehensive explorations of p-type molecular photovoltaic materials and polymer-polymer solar cell materials, devices, and stability Practical discussions of electron donating ladder-type heteroacenes for photovoltaic applications In-depth examinations of chlorinated organic and single-component organic solar cells, as well as the morphological characterization and manipulation of organic solar cells Perfect for materials scientists, organic and solid-state chemists, and solid-state physicists, Organic Solar Cells: Materials Design, Technology and Commercialization will also earn a place in the libraries of surface chemists and physicists and electrical engineers.




Polymer Photovoltaics


Book Description

An international perspective on the latest research in polymer solar cell technology.







Organic Solar Cells


Book Description

Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.







Handbook of Organic Materials for Electronic and Photonic Devices


Book Description

Handbook of Organic Materials for Electronic and Photonic Devices, Second Edition, provides an overview of the materials, mechanisms, characterization techniques, structure-property relationships, and most promising applications of organic materials. This new release includes new content on emerging organic materials, expanded content on the basic physics behind electronic properties, and new chapters on organic photonics. As advances in organic materials design, fabrication, and processing that enabled charge unprecedented carrier mobilities and power conversion efficiencies have made dramatic advances since the first edition, this latest release presents a necessary understanding of the underlying physics that enabled novel material design and improved organic device design. Provides a comprehensive overview of the materials, mechanisms, characterization techniques, and structure property relationships of organic electronic and photonic materials Reviews key applications, including organic solar cells, light-emitting diodes electrochemical cells, sensors, transistors, bioelectronics, and memory devices New content to reflect latest advances in our understanding of underlying physics to enable material design and device fabrication




Semiconducting Polymer Composites


Book Description

The first part of Semiconducting Polymer Composites describes the principles and concepts of semiconducting polymer composites in general, addressing electrical conductivity, energy alignment at interfaces, morphology, energy transfer, percolation theory and processing techniques. In later chapters, different types of polymer composites are discussed: mixtures of semiconducting and insulating or semiconducting and semiconducting components, respectively. These composites are suitable for a variety of applications that are presented in detail, including transistors and solar cells, sensors and detectors, diodes and lasers as well as anti-corrosive and anti-static surface coatings.




Polymer Solar Cells: Molecular Design and Microstructure Control


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.