The Design of Plastic Optical Systems


Book Description

Many items we use in our daily lives--the traffic signals, motion sensors, fingerprint readers, cell phone cameras, bar code scanners, and DVD players--rely upon plastic optical systems to perform. Consequently, there is a growing need for individuals who are knowledgeable in the design, development, and production of such systems. This book provides an overview of the design of plastic optical systems and is structured along the lines of a typical development project. Following a brief background discussion, the advantages and disadvantages of plastic optics are considered. Next, the available materials and their properties are described, as well as the issues of material selection and specification. Various manufacturing methods are reviewed, followed by a chapter on design guidelines, leading into several design examples. Following the examples, the prototyping and testing of a design is covered. Finally, bringing the design to production is discussed. Several groups will benefit from the material presented, including optical engineers, technical managers, and engineers of other disciplines who need to design and develop plastic optical systems but lack the knowledge or training to do so. With the help of this book, readers should understand the benefits and limitations of plastic optical systems and be able to determine if this technology is appropriate for their applications. They will have the basic knowledge to undertake the design of these systems, should they choose to do so themselves, or they will be able to have the appropriate conversations with the individuals or companies they ask to perform the work.




Molded Optics


Book Description

While several available texts discuss molded plastic optics, none provide information on all classes of molded optics. Filling this gap, Molded Optics: Design and Manufacture presents detailed descriptions of molded plastic, glass, and infrared optics. Since an understanding of the manufacturing process is necessary to develop cost-effective, produ




OPTICAL SYSTEM DESIGN


Book Description

This classic resource provides a clear, well-illustrated introduction to the essentials of optical design-from basic principles to cutting-edge design methods.




Handbook of Plastic Optics


Book Description

The use of plastic optics instead of glass offers a number of advantages. Most importantly, it is far less expensive, and therefore opens a huge potential for mass production. It also offers the opportunity to use unique element configuration. This book gives a coherent overview over the current status of injection molded optics describing in detail all aspects of plastic optics, from design issues to production technology and quality control. The focus is firmly set on practical applications, making this an indispensable information source for all those working in optics research and development. The contributors, each one a leading expert in his chosen discipline, possess either a background in industry or close relations to the industry, thus bringing in an ample amount of practical experience.




Harnessing Light


Book Description

Optical science and engineering affect almost every aspect of our lives. Millions of miles of optical fiber carry voice and data signals around the world. Lasers are used in surgery of the retina, kidneys, and heart. New high-efficiency light sources promise dramatic reductions in electricity consumption. Night-vision equipment and satellite surveillance are changing how wars are fought. Industry uses optical methods in everything from the production of computer chips to the construction of tunnels. Harnessing Light surveys this multitude of applications, as well as the status of the optics industry and of research and education in optics, and identifies actions that could enhance the field's contributions to society and facilitate its continued technical development.




Intermediate Optical Design


Book Description

This second volume based on Michael Kidger's popular short courses and workshops is aimed at readers already familiar with the concepts presented in Fundamental Optical Design (SPIE Press Vol. PM92). It begins with a sweeping discussion of optimization that is written with the user in mind and continues with a unique look at the role of higher-order aberrations. The book's key feature is its astounding presentation of a wide range of practical design examples, covering such problems as secondary spectrum correction, high numerical aperture designs, lasers, zoom lenses, tilted or decentered optical systems, and price and performance requirements. Each scenario is accompanied by an in-depth discussion that goes well beyond the ray aberration plot, including useful insights into an optical designer's thought processes.




Opto-Mechanical Systems Design, Volume 1


Book Description

Opto-Mechanical Systems Design, Fourth Edition is different in many ways from its three earlier editions: coauthor Daniel Vukobratovich has brought his broad expertise in materials, opto-mechanical design, analysis of optical instruments, large mirrors, and structures to bear throughout the book; Jan Nijenhuis has contributed a comprehensive new chapter on kinematics and applications of flexures; and several other experts in special aspects of opto-mechanics have contributed portions of other chapters. An expanded feature—a total of 110 worked-out design examples—has been added to several chapters to show how the theory, equations, and analytical methods can be applied by the reader. Finally, the extended text, new illustrations, new tables of data, and new references have warranted publication of this work in the form of two separate but closely entwined volumes. This first volume, Design and Analysis of Opto-Mechanical Assemblies, addresses topics pertaining primarily to optics smaller than 50 cm aperture. It summarizes the opto-mechanical design process, considers pertinent environmental influences, lists and updates key parameters for materials, illustrates numerous ways for mounting individual and multiple lenses, shows typical ways to design and mount windows and similar components, details designs for many types of prisms and techniques for mounting them, suggests designs and mounting techniques for small mirrors, explains the benefits of kinematic design and uses of flexures, describes how to analyze various types of opto-mechanical interfaces, demonstrates how the strength of glass can be determined and how to estimate stress generated in optics, and explains how changing temperature affects opto-mechanical assemblies.




Diffractive Optics


Book Description

This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs). Although there are not long derivations or detailed methods for specific engineering calculations, the reader should be familiar and comfortable with basic computational techniques. This text is not a 'cookbook' for producing DOEs, but it should provide readers with sufficient information to assess whether this technology would benefit their work, and to understand the requirements for using the concepts and techniques presented by the authors.




Lens Design Fundamentals


Book Description

- Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies. This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more. Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner. Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980). R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference. - Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field




Optical Communications Rules of Thumb


Book Description

This engineering tool provides over 200 time and cost saving rules of thumb--short cuts, tricks, and methods that optical communications veterans have developed through long years of trial and error. * DWDM (Dense Wavelength Division Multiplexing) and SONET (Synchronous Optical NETwork) rules * Information Transmission, fiber optics, and systems rules