The Determination of Geophysical Parameters From Space


Book Description

This volume gives a wide ranging overview of current issues in the acquisition and evaluation of geophysical information from space and from the air and is suitable for postgraduate and postdoctoral students as well as established workers in the field. Topics covered include the processing and interpretation of remote sensing data from aircraft and satellites; reflection and emission properties of natural surfaces; use of remote sensing data for coastal and marine environmental studies; pollution monitoring; surface temperature measurements and meteorological measurements. In addition, large parts of the material concerns itself with the various data analysis techniques employed and the accuracy of the results obtained when attempting to make geophysical measurements through the atmosphere.




Earthquake Source Mechanics


Book Description




Determination of Precise Satellite Orbits and Geodetic Parameters using Satellite Laser Ranging


Book Description

The contribution of Satellite Laser Ranging (SLR) to the definition of the origin of the reference frame (geocenter coordinates), the global scale, and low degree coefficients of the Earth's gravity field is essential due to the remarkable orbit stability of geodetic satellites and the accuracy of laser observations at a level of a few millimeters. Considering these aspects, SLR has an exceptional potential in establishing global networks and deriving geodetic parameters of the supreme quality. SLR faces today the highest requirements of the Global Geodetic Observing System (GGOS) yielding 1 mm of long-term station coordinate and 0.1 mm/y of station velocity stability. The goal of this work is to assess the contribution of the latest models and corrections to the SLR-derived parameters, to enhance the quality and reliability of the SLR-derived products, and to propose a new approach of orbit parameterization for low orbiting geodetic satellites. The impact of orbit perturbations is studied in detail, including perturbing forces of gravitational origin (Earth's gravity field, ocean and atmosphere tides) and perturbing forces of non-gravitational origin (atmospheric drag, the Yarkovsky effect, albedo and Earth's infrared radiation pressure). A multi-satellite combined solution is obtained using SLR observations to LAGEOS-1, LAGEOS-2, Starlette, Stella, and AJISAI. The quality of the SLR-derived parameters from the combined solution is compared with external solutions. The Earth rotation parameters are compared to the IERS-08-C04 series and the GNSS-derived series, whereas the time variable Earth's gravity field coefficients are compared to the CHAMP and GRACE-derived results.




Literature 1986, Part 1


Book Description







Encyclopedia of Solid Earth Geophysics


Book Description

The past few decades have witnessed the growth of the Earth Sciences in the pursuit of knowledge and understanding of the planet that we live on. This development addresses the challenging endeavor to enrich human lives with the bounties of Nature as well as to preserve the planet for the generations to come. Solid Earth Geophysics aspires to define and quantify the internal structure and processes of the Earth in terms of the principles of physics and forms the intrinsic framework, which other allied disciplines utilize for more specific investigations. The first edition of the Encyclopedia of Solid Earth Geophysics was published in 1989 by Van Nostrand Reinhold publishing company. More than two decades later, this new volume, edited by Prof. Harsh K. Gupta, represents a thoroughly revised and expanded reference work. It brings together more than 200 articles covering established and new concepts of Geophysics across the various sub-disciplines such as Gravity, Geodesy, Geomagnetism, Seismology, Seismics, Deep Earth Processes, Plate Tectonics, Thermal Domains, Computational Methods, etc. in a systematic and consistent format and standard. It is an authoritative and current reference source with extraordinary width of scope. It draws its unique strength from the expert contributions of editors and authors across the globe. It is designed to serve as a valuable and cherished source of information for current and future generations of professionals.




Observation of the Earth and Its Environment


Book Description

This book is about spaceborne missions and instruments. In addition, surveys of airborne missions and of campaigns can be found on the accompanying CD-ROM in pdf-format. Compared with the 3rd edition the spaceborne part grew from about 300 to 1000 pages. The complete text - including the electronic-only chapters - contains more than 1900 pages. New chapters treat the history of Earth observation and university missions. The number of commercial Earth imaging missions has grown significantly. A chapter contains reference data and definitions. Extensive appendices provide a comprehensive glossary, acronyms and abbreviations and an index of sensors. An effort has been made to present the information in context, to point out relationships and interconnections. The book may serve as a reference and guide to all involved in the various national and international space programs: researchers and managers, service providers and data users, teachers and students.




Satellite Gravity and the Geosphere


Book Description

For the past three decades, it has been possible to measure the earth's static gravity from satellites. Such measurements have been used to address many important scientific problems, including the earth's internal structure, and geologically slow processes like mantle convection. In principle, it is possible to resolve the time-varying component of the gravity field by improving the accuracy of satellite gravity measurements. These temporal variations are caused by dynamic processes that change the mass distribution in the earth, oceans, and atmosphere. Acquisition of improved time-varying gravity data would open a new class of important scientific problems to analysis, including crustal motions associated with earthquakes and changes in groundwater levels, ice dynamics, sea-level changes, and atmospheric and oceanic circulation patterns. This book evaluates the potential for using satellite technologies to measure the time-varying component of the gravity field and assess the utility of these data for addressing problems of interest to the earth sciences, natural hazards, and resource communities.




Treatise on Water Science


Book Description

Water quality and management are of great significance globally, as the demand for clean, potable water far exceeds the availability. Water science research brings together the natural and applied sciences, engineering, chemistry, law and policy, and economics, and the Treatise on Water Science seeks to unite these areas through contributions from a global team of author-experts. The 4-volume set examines topics in depth, with an emphasis on innovative research and technologies for those working in applied areas. Published in partnership with and endorsed by the International Water Association (IWA), demonstrating the authority of the content Editor-in-Chief Peter Wilderer, a Stockholm Water Prize recipient, has assembled a world-class team of volume editors and contributing authors Topics related to water resource management, water quality and supply, and handling of wastewater are treated in depth




Earth Resources


Book Description