The Development of Mathematics Throughout the Centuries


Book Description

Throughout the book, readers take a journey throughout time and observe how people around the world have understood these patterns of quantity, structure, and dimension around them. The Development of Mathematics Throughout the Centuries: A Brief History in a Cultural Contex provides a brief overview of the history of mathematics in a very straightforward and understandable manner and also addresses major findings that influenced the development of mathematics as a coherent discipline. This book: Highlights the contributions made by various world cultures including African, Egyptian, Babylonian, Chinese, Indian, Islamic, and pre-Columbian American mathematics Features an approach that is not too rigorous and is ideal for a one-semester course of the history of mathematics. Includes a Resources and Recommended Reading section for further exploration and has been extensively classroom-tested




The Development of Mathematics


Book Description

Time-honored study by a prominent scholar of mathematics traces decisive epochs from the evolution of mathematical ideas in ancient Egypt and Babylonia to major breakthroughs in the 19th and 20th centuries. 1945 edition.




Mathematics and Its History


Book Description

This textbook provides a unified and concise exploration of undergraduate mathematics by approaching the subject through its history. Readers will discover the rich tapestry of ideas behind familiar topics from the undergraduate curriculum, such as calculus, algebra, topology, and more. Featuring historical episodes ranging from the Ancient Greeks to Fermat and Descartes, this volume offers a glimpse into the broader context in which these ideas developed, revealing unexpected connections that make this ideal for a senior capstone course. The presentation of previous versions has been refined by omitting the less mainstream topics and inserting new connecting material, allowing instructors to cover the book in a one-semester course. This condensed edition prioritizes succinctness and cohesiveness, and there is a greater emphasis on visual clarity, featuring full color images and high quality 3D models. As in previous editions, a wide array of mathematical topics are covered, from geometry to computation; however, biographical sketches have been omitted. Mathematics and Its History: A Concise Edition is an essential resource for courses or reading programs on the history of mathematics. Knowledge of basic calculus, algebra, geometry, topology, and set theory is assumed. From reviews of previous editions: “Mathematics and Its History is a joy to read. The writing is clear, concise and inviting. The style is very different from a traditional text. I found myself picking it up to read at the expense of my usual late evening thriller or detective novel.... The author has done a wonderful job of tying together the dominant themes of undergraduate mathematics.” Richard J. Wilders, MAA, on the Third Edition "The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century.... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community." European Mathematical Society, on the Second Edition




A History in Sum


Book Description

In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard’s mathematics department was at the center of these developments. A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics—in algebraic geometry and topology, complex analysis, number theory, and a host of esoteric subdisciplines that have rarely been written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose. The story begins in 1825, when a precocious sixteen-year-old freshman, Benjamin Peirce, arrived at the College. He would become the first American to produce original mathematics—an ambition frowned upon in an era when professors largely limited themselves to teaching. Peirce’s successors—William Fogg Osgood and Maxime Bôcher—undertook the task of transforming the math department into a world-class research center, attracting to the faculty such luminaries as George David Birkhoff. Birkhoff produced a dazzling body of work, while training a generation of innovators—students like Marston Morse and Hassler Whitney, who forged novel pathways in topology and other areas. Influential figures from around the world soon flocked to Harvard, some overcoming great challenges to pursue their elected calling. A History in Sum elucidates the contributions of these extraordinary minds and makes clear why the history of the Harvard mathematics department is an essential part of the history of mathematics in America and beyond.







The History of Mathematics


Book Description

This new edition brings the fascinating and intriguing history of mathematics to life The Second Edition of this internationally acclaimed text has been thoroughly revised, updated, and reorganized to give readers a fresh perspective on the evolution of mathematics. Written by one of the world's leading experts on the history of mathematics, the book details the key historical developments in the field, providing an understanding and appreciation of how mathematics influences today's science, art, music, literature, and society. In the first edition, each chapter was devoted to a single culture. This Second Edition is organized by subject matter: a general survey of mathematics in many cultures, arithmetic, geometry, algebra, analysis, and mathematical inference. This new organization enables students to focus on one complete topic and, at the same time, compare how different cultures approached each topic. Many new photographs and diagrams have been added to this edition to enhance the presentation. The text is divided into seven parts: The World of Mathematics and the Mathematics of the World, including the origin and prehistory of mathematics, cultural surveys, and women mathematicians Numbers, including counting, calculation, ancient number theory, and numbers and number theory in modern mathematics Color Plates, illustrating the impact of mathematics on civilizations from Egypt to Japan to Mexico to modern Europe Space, including measurement, Euclidean geometry, post-Euclidean geometry, and modern geometrics Algebra, including problems leading to algebra, equations and methods, and modern algebra Analysis, including the calculus, real, and complex analysis Mathematical Inference, including probability and statistics, and logic and set theory As readers progress through the text, they learn about the evolution of each topic, how different cultures devised their own solutions, and how these solutions enabled the cultures to develop and progress. In addition, readers will meet some of the greatest mathematicians of the ages, who helped lay the groundwork for today's science and technology. The book's lively approach makes it appropriate for anyone interested in learning how the field of mathematics came to be what it is today. It can also serve as a textbook for undergraduate or graduate-level courses. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.




Math through the Ages: A Gentle History for Teachers and Others Expanded Second Edition


Book Description

Where did math come from? Who thought up all those algebra symbols, and why? What is the story behind π π? … negative numbers? … the metric system? … quadratic equations? … sine and cosine? … logs? The 30 independent historical sketches in Math through the Ages answer these questions and many others in an informal, easygoing style that is accessible to teachers, students, and anyone who is curious about the history of mathematical ideas. Each sketch includes Questions and Projects to help you learn more about its topic and to see how the main ideas fit into the bigger picture of history. The 30 short stories are preceded by a 58-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. “What to Read Next” and reading suggestions after each sketch provide starting points for readers who want to learn more. This book is ideal for a broad spectrum of audiences, including students in history of mathematics courses at the late high school or early college level, pre-service and in-service teachers, and anyone who just wants to know a little more about the origins of mathematics.




The Rainbow of Mathematics


Book Description

"For Ivor Grattan-Guinness . . . the story of how numbers were invented and harnessed is a passionate, physical saga."--"The New Yorker." The author charts the growth of mathematics through the centuries and describes the evolution of arithmetic and geometry, trigonometry, and other disciplines.




Writing the History of Mathematics: Its Historical Development


Book Description

As an historiographic monograph, this book offers a detailed survey of the professional evolution and significance of an entire discipline devoted to the history of science. It provides both an intellectual and a social history of the development of the subject from the first such effort written by the ancient Greek author Eudemus in the Fourth Century BC, to the founding of the international journal, Historia Mathematica, by Kenneth O. May in the early 1970s.




Turning Points in the History of Mathematics


Book Description

This book explores some of the major turning points in the history of mathematics, ranging from ancient Greece to the present, demonstrating the drama that has often been a part of its evolution. Studying these breakthroughs, transitions, and revolutions, their stumbling-blocks and their triumphs, can help illuminate the importance of the history of mathematics for its teaching, learning, and appreciation. Some of the turning points considered are the rise of the axiomatic method (most famously in Euclid), and the subsequent major changes in it (for example, by David Hilbert); the “wedding,” via analytic geometry, of algebra and geometry; the “taming” of the infinitely small and the infinitely large; the passages from algebra to algebras, from geometry to geometries, and from arithmetic to arithmetics; and the revolutions in the late nineteenth and early twentieth centuries that resulted from Georg Cantor’s creation of transfinite set theory. The origin of each turning point is discussed, along with the mathematicians involved and some of the mathematics that resulted. Problems and projects are included in each chapter to extend and increase understanding of the material. Substantial reference lists are also provided. Turning Points in the History of Mathematics will be a valuable resource for teachers of, and students in, courses in mathematics or its history. The book should also be of interest to anyone with a background in mathematics who wishes to learn more about the important moments in its development.