Chemistry 2e


Book Description

Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.




Structural Chemistry of Inorganic Actinide Compounds


Book Description

Structural Chemistry of Inorganic Actinide Compounds is a collection of 13 reviews on structural and coordination chemistry of actinide compounds. Within the last decade, these compounds have attracted considerable attention because of their importance for radioactive waste management, catalysis, ion-exchange and absorption applications, etc. Synthetic and natural actinide compounds are also of great environmental concern as they form as a result of alteration of spent nuclear fuel and radioactive waste under Earth surface conditions, during burn-up of nuclear fuel in reactors, represent oxidation products of uranium miles and mine tailings, etc. The actinide compounds are also of considerable interest to material scientists due to the unique electronic properties of actinides that give rise to interesting physical properties controlled by the structural architecture of respective compounds. The book provides both general overview and review of recent developments in the field, including such emergent topics as nanomaterials and nanoparticles and their relevance to the transfer of actinides under environmental conditions.* Covers over 2,000 actinide compounds including materials, minerals and coordination polymers* Summarizes recent achievements in the field* Some chapters reveal (secret) advances made by the Soviet Union during the 'Cold war'




The Actinides: Electronic Structure and Related Properties


Book Description

The Actinides: Electronic Structure and Related Properties, Volume I reviews major advances that have been made concerning the electronic structure and properties of actinide elements, alloys, and compounds. The electronic energy band structure and magnetic properties of the actinides are examined, and results of hyperfine and neutron scattering studies are presented. Comprised of six chapters, this book opens with a historical introduction to actinide research followed by a chapter on crystal field theory that discusses the behavior of 5f electrons in actinide compounds when exposed to strong crystal-field interactions, with emphasis on the strong intra-atomic correlation between electrons. The following chapters discuss the electronic energy band structure of the actinide metals, as derived from energy band theory; the magnetic properties of the actinide compounds in relation to their electronic structure; and the microscopic electronic properties of actinide metals and compounds obtained from nuclear magnetic resonance and neutron scattering studies. The final chapter summarizes the unique contribution by slow neutron-scattering experiments. This volume will be useful to scientists involved in work on the actinides as well as newcomers in the field.




The Chemistry of the Actinide and Transactinide Elements (3rd ed., Volumes 1-5)


Book Description

The Chemistry of the Actinide and Transactinide Elements is a contemporary and definitive compilation of chemical properties of all of the actinide elements, especially of the technologically important elements uranium and plutonium, as well as the transactinide elements. In addition to the comprehensive treatment of the chemical properties of each element, ion, and compound from atomic number 89 (actinium) through to 109 (meitnerium), this multi-volume work has specialized and definitive chapters on electronic theory, optical and laser fluorescence spectroscopy, X-ray absorption spectroscopy, organoactinide chemistry, thermodynamics, magnetic properties, the metals, coordination chemistry, separations, and trace analysis. Several chapters deal with environmental science, safe handling, and biological interactions of the actinide elements. The Editors invited teams of authors, who are active practitioners and recognized experts in their specialty, to write each chapter and have endeavoured to provide a balanced and insightful treatment of these fascinating elements at the frontier of the periodic table. Because the field has expanded with new spectroscopic techniques and environmental focus, the work encompasses five volumes, each of which groups chapters on related topics. All chapters represent the current state of research in the chemistry of these elements and related fields.




Physical Inorganic Chemistry


Book Description

GEORGE CHRISTOU Indiana University, Bloomington I am no doubt representative of a large number of current inorganic chemists in having obtained my undergraduate and postgraduate degrees in the 1970s. It was during this period that I began my continuing love affair with this subject, and the fact that it happened while I was a student in an organic laboratory is beside the point. I was always enchanted by the more physical aspects of inorganic chemistry; while being captivated from an early stage by the synthetic side, and the measure of creation with a small c that it entails, I nevertheless found the application of various theoretical, spectroscopic and physicochemical techniques to inorganic compounds to be fascinating, stimulating, educational and downright exciting. The various bonding theories, for example, and their use to explain or interpret spectroscopic observations were more or less universally accepted as belonging within the realm of inorganic chemistry, and textbooks of the day had whole sections on bonding theories, magnetism, kinetics, electron-transfer mechanisms and so on. However, things changed, and subsequent inorganic chemistry teaching texts tended to emphasize the more synthetic and descriptive side of the field. There are a number of reasons for this, and they no doubt include the rise of diamagnetic organometallic chemistry as the dominant subdiscipline within inorganic chemistry and its relative narrowness vis-d-vis physical methods required for its prosecution.




Rare Earth Elements and Actinides


Book Description

"Sponsored by the ACS Division of Nuclear Chemistry and Technology."







The Actinides


Book Description

The Actinides: Electronic Structure and Related Properties, Volume II presents a comprehensive review of the pertinent information and the existing body of knowledge on the electric structure of the actinide elements, compounds, and alloys. This book discusses the behavior of actinides in detail. Organized into eight chapters, this volume begins with an overview of how electronic band-structure calculations have contributed to the basic understanding of diverse physical properties of the AX compounds. This text then describes the concept of magnetism in the metals, intermetallic compounds, and dilute alloys. Other chapters consider the optical experiments to obtain mappings of the occupied and empty electronic density of states. This book includes as well a comprehensive list of compounds, as well as a description and classification of crystal-structure data. The final chapter deals with the important improvements in the experimental methods for studying surfaces and surface reactions. This book is a valuable resource for physicists and materials scientists.




Handbook on the Physics and Chemistry of Rare Earths


Book Description

Optical spectroscopy has been instrumental in the discovery of many lanthanide elements. In return, these elements have always played a prominent role in lighting devices and light conversion technologies (Auer mantles, incandescent lamps, lasers, cathode-ray and plasma displays). They are also presently used in highly sensitive luminescent bio-analyses and cell imaging. This volume of the Handbook on the Physics and Chemistry of Rare Earths is entirely devoted to the photophysical properties of these elements. It is dedicated to the late Professor William T (Bill) Carnall who has pioneered the understanding of lanthanide spectra in the 1960's and starts with a Dedication to this scientist. The following five chapters describe various aspects of lanthanide spectroscopy and its applications. Chapters 231 presents state-of-the-art theoretical calculations of lanthanide energy levels and transition intensities. It is followed by a review (Chapter 232) on both theoretical and experimental aspects of f-d transitions, a less well known field of lanthanide spectroscopy, yet very important for the design of new optical materials. Chapter 233 describes how confinement effects act on the photophysical properties of lanthanides when they are inserted into nanomaterials, including nanoparticles, nanosheets, nanowires, nanotubes, insulating and semiconductor nanocrystals. The use of lanthanide chelates for biomedical analyses is presented in Chapter 234; long lifetimes of the excited states of lanthanide ions allow the use of time-resolved spectroscopy, which leads to highly sensitive analyses devoid of background effect from the autofluorescence of the samples. The last review (Chapter 235) provides a comprehensive survey of near-infrared (NIR) emitting molecular probes and devices, spanning an all range of compounds, from simple chelates to macrocyclic complexes, heterometallic functional edifices, coordination polymers and other extended structures. Applications ranging from telecommunications to light-emitting diodes and biomedical analyses are assessed.- Provides a comprehensive look at optical spectroscopy and its applications- A volume in the continuing authoritative series which deals with the chemistry, materials science, physics and technology of the rare earth elements




Elementary Electronic Structure


Book Description

This is a revised edition of the 1999 text on the electronic structure and properties of solids, similar in spirit to the well-known 1980 text Electronic Structure and the Properties of Solids. The revisions include an added chapter on glasses, and rewritten sections on spin-orbit coupling, magnetic alloys, and actinides. The text covers covalent semiconductors, ionic insulators, simple metals, and transition-metal and f-shell-metal systems. It focuses on the most important aspects of each system, making what approximations are necessary in order to proceed analytically and obtain formulae for the properties. Such back-of-the-envelope formulae, which display the dependence of any property on the parameters of the system, are characteristic of Harrison's approach to electronic structure, as is his simple presentation and his provision of all the needed parameters.In spite of the diversity of systems and materials, the approach is systematic and coherent, combining the tight-binding (or atomic) picture with the pseudopotential (or free-electron) picture. This provides parameters ? the empty-core radii as well as the covalent energies ? and conceptual bases for estimating the various properties of all these systems. Extensive tables of parameters and properties are included.The book has been written as a text, with problems at the end of each chapter, and others can readily be generated by asking for estimates of different properties, or different materials, than those treated in the text. In fact, the ease of generating interesting problems reflects the extraordinary utility and simplicity of the methods introduced. Developments since the 1980 publication have made the theory simpler and much more accurate, besides allowing much wider application.