The Elements of Continuum Biomechanics


Book Description

An appealing and engaging introduction to Continuum Mechanics in Biosciences This book presents the elements of Continuum Mechanics to people interested in applications to biological systems. It is divided into two parts, the first of which introduces the basic concepts within a strictly one-dimensional spatial context. This policy has been adopted so as to allow the newcomer to Continuum Mechanics to appreciate how the theory can be applied to important issues in Biomechanics from the very beginning. These include mechanical and thermodynamical balance, materials with fading memory and chemically reacting mixtures. In the second part of the book, the fully fledged three-dimensional theory is presented and applied to hyperelasticity of soft tissue, and to theories of remodeling, aging and growth. The book closes with a chapter devoted to Finite Element analysis. These and other topics are illustrated with case studies motivated by biomedical applications, such as vibration of air in the air canal, hyperthermia treatment of tumours, striated muscle memory, biphasic model of cartilage and adaptive elasticity of bone. The book offers a challenging and appealing introduction to Continuum Mechanics for students and researchers of biomechanics, and other engineering and scientific disciplines. Key features: Explains continuum mechanics using examples from biomechanics for a uniquely accessible introduction to the topic Moves from foundation topics, such as kinematics and balance laws, to more advanced areas such as theories of growth and the finite element method.. Transition from a one-dimensional approach to the general theory gives the book broad coverage, providing a clear introduction for beginners new to the topic, as well as an excellent foundation for those considering moving to more advanced application




The Elements of Continuum Mechanics


Book Description

The lectures here reported were first delivered in August and September, 1965, for the Department of Mechanical and Aerospace Engi neering at syracuse University, New York under the sponsorship of the New York State Science and Technology Foundation. Lectures 1-6 and 22-23 are revised from a version prepared by Professor Kin N. Tong on the basis of a transcription of the lectures, kindly provided by Professor S. Eskinazi. The remainder of th~ text has been written out afresh from my own notes. Much of the same ground was covered in my lectures to the Austra lian Mathematical Society's Summer Research Institute at Melbourne in January and February, 1966, and for the parts affected the text conforms to this latter presentation. I am grateful to Professors C.-C. Wang and K. N. Tong for criticism of the manuscript. These lectures constitute a course, not a treatise. Names are attached to theorems justly, to the best of my knowledge, but are not intended to replace a history of the subject or references to the sources.




Biomechanics of Living Organs


Book Description

Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ. Each author introduces the state-of-the-art concerning constitutive laws and then illustrates the implementation of such laws with Finite Element Modeling of these organs. The focus of each chapter is on instruction, careful derivation and presentation of formulae, and methods. When modeling tissues, this book will help users determine modeling parameters and the variability for particular populations. Chapters highlight important experimental techniques needed to inform, motivate, and validate the choice of strain energy function or the constitutive model. Remodeling, growth, and damage are all covered, as is the relationship of constitutive relationships of organs to tissue and molecular scale properties (as net organ behavior depends fundamentally on its sub components). This book is intended for professionals, academics, and students in tissue and continuum biomechanics. Covers hyper elastic frameworks for large tissue deformations Considers which strain energy functions are the most appropriate to model the passive and active states of living tissue Evaluates the physical meaning of proposed energy functions




Fundamentals of Continuum Mechanics


Book Description

A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energy, and ideal constitutive relations and is a suitable textbook for introductory graduate courses for students in mechanical and civil engineering, as well as those studying material science, geology and geophysics and biomechanics. A concise introductory course text on continuum mechanics Covers the fundamentals of continuum mechanics Uses modern tensor notation Contains problems and accompanied by a companion website hosting solutions Suitable as a textbook for introductory graduate courses for students in mechanical and civil engineering




Continuum Modeling in Mechanobiology


Book Description

This book examines key theoretical tools that are currently used to develop mathematical models as an aid in understanding the biological response of cells and tissues to mechanical stimuli. Problems in growth and remodeling, tissue and organ development, and functional adaptation are all covered. Chapters on tensor analysis and nonlinear elasticity provide the necessary background for understanding the engineering theories that are currently used to solve challenges in mechanobiology. This is an ideal book for biomechanical engineers who work on problems in mechanobiology and tissue engineering.




Elements of Continuum Mechanics


Book Description




An Introduction to Biomechanics


Book Description

Designed to meet the needs of undergraduate students, "Introduction to Biomechanics" takes the fresh approach of combining the viewpoints of both a well-respected teacher and a successful student. With an eye toward practicality without loss of depth of instruction, this book seeks to explain the fundamental concepts of biomechanics. With the accompanying web site providing models, sample problems, review questions and more, Introduction to Biomechanics provides students with the full range of instructional material for this complex and dynamic field.




An Introduction to Continuum Mechanics


Book Description

This best-selling textbook presents the concepts of continuum mechanics, and the second edition includes additional explanations, examples and exercises.




Continuum Mechanics for Engineers


Book Description

A bestselling textbook in its first three editions, Continuum Mechanics for Engineers, Fourth Edition provides engineering students with a complete, concise, and accessible introduction to advanced engineering mechanics. It provides information that is useful in emerging engineering areas, such as micro-mechanics and biomechanics. Through a mastery of this volume’s contents and additional rigorous finite element training, readers will develop the mechanics foundation necessary to skillfully use modern, advanced design tools. Features: Provides a basic, understandable approach to the concepts, mathematics, and engineering applications of continuum mechanics Updated throughout, and adds a new chapter on plasticity Features an expanded coverage of fluids Includes numerous all new end-of-chapter problems With an abundance of worked examples and chapter problems, it carefully explains necessary mathematics and presents numerous illustrations, giving students and practicing professionals an excellent self-study guide to enhance their skills.




Introduction to Continuum Biomechanics


Book Description

This book is concerned with the study of continuum mechanics applied to biological systems, i.e., continuum biomechanics. This vast and exciting subject allows description of when a bone may fracture due to excessive loading, how blood behaves as both a solid and fluid, down to how cells respond to mechanical forces that lead to changes in their behavior, a process known as mechanotransduction. We have written for senior undergraduate students and first year graduate students in mechanical or biomedical engineering, but individuals working at biotechnology companies that deal in biomaterials or biomechanics should also find the information presented relevant and easily accessible. Table of Contents: Tensor Calculus / Kinematics of a Continuum / Stress / Elasticity / Fluids / Blood and Circulation / Viscoelasticity / Poroelasticity and Thermoelasticity / Biphasic Theory