The Essentials of Strength of Materials and Mechanics of Solids I


Book Description

Topics include axial force, shear force, bend ing moment, stress, strain, stress-strain relations, center of gravity, centroids, moment of inertia, and design and deflection of beams.




Strength of Materials Mechanics of Solids II Essentials


Book Description

Topics include statically indeterminate beams, columns, composite structures, failure criteria in design, torsion, joints, energy methods, and combined stresses.




Mechanics and Strength of Materials


Book Description

Gives a clear and thorough presentation of the fundamental principles of mechanics and strength of materials. Provides both the theory and applications of mechanics of materials on an intermediate theoretical level. Useful as a reference tool by postgraduates and researchers in the fields of solid mechanics as well as practicing engineers.




Mechanics of Solid Materials


Book Description

Translation of hugely successful book aimed at advanced undergraduates, graduate students and researchers.




Mechanics of Solids and Structures, Second Edition


Book Description

A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano’s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.




Engineering Solid Mechanics


Book Description

Engineering Solid Mechanics bridges the gap between elementary approaches to strength of materials and more advanced, specialized versions on the subject. The book provides a basic understanding of the fundamentals of elasticity and plasticity, applies these fundamentals to solve analytically a spectrum of engineering problems, and introduces advanced topics of mechanics of materials - including fracture mechanics, creep, superplasticity, fiber reinforced composites, powder compacts, and porous solids. Text includes: stress and strain, equilibrium, and compatibility elastic stress-strain relations the elastic problem and the stress function approach to solving plane elastic problems applications of the stress function solution in Cartesian and polar coordinates Problems of elastic rods, plates, and shells through formulating a strain compatibility function as well as applying energy methods Elastic and elastic-plastic fracture mechanics Plastic and creep deformation Inelastic deformation and its applications This book presents the material in an instructive manner, suitable for individual self-study. It emphasizes analytical treatment of the subject, which is essential for handling modern numerical methods as well as assessing and creating software packages. The authors provide generous explanations, systematic derivations, and detailed discussions, supplemented by a vast variety of problems and solved examples. Primarily written for professionals and students in mechanical engineering, Engineering Solid Mechanics also serves persons in other fields of engineering, such as aerospace, civil, and material engineering.




Essentials of Strength of Materials [Concise Edition]


Book Description

This book which deals with the various topics in the subject of Strength of Materials exhaustively. It present the subject-matter in a lucid, direct and easily understandable style. A large number of worked out simple, moderate and difficult problems are arranged in a systematic manner to enable the students to grasp the subject effectively, from examination point of view. The book comprises of 18 chapters (including advance topics) covering the syllabi in the subject of "Strength of Materials" of all the Indian Universities and Competitive Examinations as well. It contains Experiments at the end of the chapters to enable the students to have an access to the practical aspects of the subject.




STRENGTH OF MATERIALS


Book Description




History of Strength of Materials


Book Description

Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.




Introduction to Solid Mechanics


Book Description

This expanded second edition presents in one text the concepts and processes covered in statics and mechanics of materials curricula following a systematic, topically integrated approach. Building on the novel pedagogy of fusing concepts covered in traditional undergraduate courses in rigid-body statics and deformable body mechanics, rather than simply grafting them together, this new edition develops further the authors’ very original treatment of solid mechanics with additional figures, an elaboration on selected solved problems, and additional text as well as a new subsection on viscoelasticity in response to students’ feedback. Introduction to Solid Mechanics: An Integrated Approach, Second Edition, offers a holistic treatment of the depth and breadth of solid mechanics and the inter-relationships of its underlying concepts. Proceeding from first principles to applications, the book stands as a whole greater than the sum of its parts.