Transport and Turbulence in Quasi-Uniform and Versatile Bose-Einstein Condensates


Book Description

Advancing the experimental study of superfluids relies on increasingly sophisticated techniques. We develop and demonstrate the loading of Bose-Einstein condensates (BECs) into nearly arbitrary trapping potentials, with a resolution improved by a factor of seven when compared to reported systems. These advanced control techniques have since been adopted by several cold atoms labs around the world. How this BEC system was used to study 2D superfluid dynamics is described. In particular, negative temperature vortex states in a two-dimensional quantum fluid were observed. These states were first predicted by Lars Onsager 70 years ago and have significance to 2D turbulence in quantum and classical fluids, long-range interacting systems, and defect dynamics in high-energy physics. These experiments have established dilute-gas BECs as the prototypical system for the experimental study of point vortices and their nonequilibrium dynamics. We also developed a new approach to superfluid circuitry based on classical acoustic circuits, demonstrating its conceptual and quantitative superiority over previous lumped-element models. This has established foundational principles of superfluid circuitry that will impact the design of future transport experiments and new generation quantum devices, such as atomtronics circuits and superfluid sensors.




Universal Themes of Bose-Einstein Condensation


Book Description

Following an explosion of research on Bose–Einstein condensation (BEC) ignited by demonstration of the effect by 2001 Nobel prize winners Cornell, Wieman and Ketterle, this book surveys the field of BEC studies. Written by experts in the field, it focuses on Bose–Einstein condensation as a universal phenomenon, covering topics such as cold atoms, magnetic and optical condensates in solids, liquid helium and field theory. Summarising general theoretical concepts and the research to date - including novel experimental realisations in previously inaccessible systems and their theoretical interpretation - it is an excellent resource for researchers and students in theoretical and experimental physics who wish to learn of the general themes of BEC in different subfields.




Emergent Nonlinear Phenomena in Bose-Einstein Condensates


Book Description

This book, written by experts in the fields of atomic physics and nonlinear science, covers the important developments in a special aspect of Bose-Einstein condensation, namely nonlinear phenomena in condensates. Topics covered include bright, dark, gap and multidimensional solitons; vortices; vortex lattices; optical lattices; multicomponent condensates; mathematical methods/rigorous results; and the beyond-the-mean-field approach.




Lasers and Their Application to the Observation of Bose-Einstein Condensates


Book Description

The first part of this book overviews the physics of lasers and describes some of the more common types of lasers and their applications. Applications of lasers include CD/DVD players, laser printers and fiber optic communication devices. Part II of this book describes the phenomenon of Bose-Einstein condensation. The experimental techniques used to create a Bose-Einstein condensate provide an interesting and unconventional application of lasers; that is, the cooling and confinement of a dilute gas at very low temperature.




Bose-Einstein Condensation in Dilute Gases


Book Description

Introduction to ultracold atomic Bose and Fermi gases for advanced undergraduates, graduates, experimentalists and theorists.




Universal Themes of Bose-Einstein Condensation


Book Description

Covering general theoretical concepts and the research to date, this book demonstrates that Bose-Einstein condensation is a truly universal phenomenon.




Bose-Einstein Condensation in Atomic Gases


Book Description

Although first proposed by Einstein in 1924, Bose-Einstein condensation (BEC) in a gas was not achieved until 1995 when, using a combination of laser cooling and trapping, and magnetic trapping and evaporation, it was first observed in rubidium and then in lithium and sodium, cooled down to extremely low temperatures. This book brought together many leaders in both theory and experiment on Bose-Einstein condensation in gases. Their lectures provided a detailed coverage of the experimental techniques for the creation and study of BEC, as well as the theoretical foundation for understanding the properties of this novel system. This volume provides the first systematic review of the field and the many developments that have taken place in the past three years.




The BCS-BEC Crossover and the Unitary Fermi Gas


Book Description

Recent experimental and theoretical progress has elucidated the tunable crossover, in ultracold Fermi gases, from BCS-type superconductors to BEC-type superfluids. The BCS-BEC Crossover and the Unitary Fermi Gas is a collaborative effort by leading international experts to provide an up-to-date introduction and a comprehensive overview of current research in this fast-moving field. It is now understood that the unitary regime that lies right in the middle of the crossover has remarkable universal properties, arising from scale invariance, and has connections with fields as diverse as nuclear physics and string theory. This volume will serve as a first point of reference for active researchers in the field, and will benefit the many non-specialists and graduate students who require a self-contained, approachable exposition of the subject matter.




Collected Papers of Carl Wieman


Book Description

Carl Wieman's contributions have had a major impact on defining the field of atomic physics as it exists today. His ground-breaking research has included precision laser spectroscopy; using lasers and atoms to provide important table-top tests of theories of elementary particle physics; the development of techniques to cool and trap atoms using laser light, particularly in inventing much simpler, less expensive ways to do this; the understanding of how atoms interact with one another and light at ultracold temperatures; and the creation of the first Bose-Einstein condensation in a dilute gas, and the study of the properties of this condensate. In recent years, he has also turned his attention to physics education and new methods and research in that area. This indispensable volume presents his collected papers, with annotations from the author, tracing his fascinating research path and providing valuable insight about the significance of the works.




Many-body Theory Exposed! Propagator Description Of Quantum Mechanics In Many-body Systems (2nd Edition)


Book Description

This comprehensive textbook on the quantum mechanics of identical particles includes a wealth of valuable experimental data, in particular recent results from direct knockout reactions directly related to the single-particle propagator in many-body theory. The comparison with data is incorporated from the start, making the abstract concept of propagators vivid and accessible. Results of numerical calculations using propagators or Green's functions are also presented. The material has been thoroughly tested in the classroom and the introductory chapters provide a seamless connection with a one-year graduate course in quantum mechanics. While the majority of books on many-body theory deal with the subject from the viewpoint of condensed matter physics, this book emphasizes finite systems as well and should be of considerable interest to researchers in nuclear, atomic, and molecular physics. A unified treatment of many different many-body systems is presented using the approach of self-consistent Green's functions. The second edition contains an extensive presentation of finite temperature propagators and covers the technique to extract the self-energy from experimental data as developed in the dispersive optical model.The coverage proceeds systematically from elementary concepts, such as second quantization and mean-field properties, to a more advanced but self-contained presentation of the physics of atoms, molecules, nuclei, nuclear and neutron matter, electron gas, quantum liquids, atomic Bose-Einstein and fermion condensates, and pairing correlations in finite and infinite systems, including finite temperature.