The Founders of Evolutionary Genetics


Book Description

genetics. " It is simply the appropriation of that term, very likely with insufficient knowledge and respect for its past usage. For that, the Editor alone is responsible and requests tolerance. He has, as far as he can tell, no intention or desire to use it for any historiographical purposes other than that just mentioned. Even more important, the decision to consider Muller together with Fisher, Haldane and Wright is also not original. Crow (1984) has already done so, arguing persua sively that Muller was "keenly interested in evolution and made sub stantial contributions to the development of the neo-Darwinian view. " Crow's reasons for considering these four figures together and the reasons discussed above are complementary. This book continues a historiographical choice he initiated; others will have to judge whether it is appropriate. The foregoing considerations were intended to show why Fisher, Haldane, Muller and Wright should be considered together in the history of theoretical evolutionary genetics. I By a welcome stroke of luck, from the point of view of the Editor, all four of these figures were born almost together, between 1889 and 1892, and almost exactly a century ago. It therefore seemed appropriate to use their birth cente naries to consider their work together. A conference was held at Boston University, on March 6, 1990, under the auspices of the Boston Center for the Philosophy and History of Science, to discuss their work. This book has emerged mainly from that conference.




Elements of Evolutionary Genetics


Book Description

This textbook shows readers how models of the genetic processes involved in evolution are made (including natural selection, migration, mutation, and genetic drift in finite populations), and how the models are used to interpret classical and molecular genetic data. The material is intended for advanced level undergraduate courses in genetics and evolutionary biology, graduate students in evolutionary biology and human genetics, and researchers in related fields who wish to learn evolutionary genetics. The topics covered include genetic variation, DNA sequence variability and its measurement, the different types of natural selection and their effects (e.g. the maintenance of variation, directional selection, and adaptation), the interactions between selection and mutation or migration, the description and analysis of variation at multiple sites in the genome, genetic drift, and the effects of spatial structure.




Evolutionary Genetics


Book Description

With recent technological advances, vast quantities of genetic and genomic data are being generated at an ever-increasing pace. The explosion in access to data has transformed the field of evolutionary genetics. A thorough understanding of evolutionary principles is essential for making sense of this, but new skill sets are also needed to handle and analyze big data. This contemporary textbook covers all the major components of modern evolutionary genetics, carefully explaining fundamental processes such as mutation, natural selection, genetic drift, and speciation. It also draws on a rich literature of exciting and inspiring examples to demonstrate the diversity of evolutionary research, including an emphasis on how evolution and selection has shaped our own species. Practical experience is essential for developing an understanding of how to use genetic and genomic data to analyze and interpret results in meaningful ways. In addition to the main text, a series of online tutorials using the R language serves as an introduction to programming, statistics, and analysis. Indeed the R environment stands out as an ideal all-purpose source platform to handle and analyze such data. The book and its online materials take full advantage of the authors' own experience in working in a post-genomic revolution world, and introduces readers to the plethora of molecular and analytical methods that have only recently become available. Evolutionary Genetics is an advanced but accessible textbook aimed principally at students of various levels (from undergraduate to postgraduate) but also for researchers looking for an updated introduction to modern evolutionary biology and genetics.




Human Evolutionary Genetics


Book Description

Human Evolutionary Genetics is a groundbreaking text which for the first time brings together molecular genetics and genomics to the study of the origins and movements of human populations. Starting with an overview of molecular genomics for the non-specialist (which can be a useful review for those with a more genetic background), the book shows h




Conceptual Breakthroughs in Evolutionary Genetics


Book Description

Conceptual Breakthroughs in Evolutionary Genetics is a pithy, lively book occupying a special niche—the conceptual history of evolutionary genetics— not inhabited by any other available treatment. Written by a world-leading authority in evolutionary genetics, this work encapsulates and ranks 70 of the most significant paradigm shifts in evolutionary biology and genetics during the century-and-a-half since Darwin and Mendel. The science of evolutionary genetics is central to all of biology, but many students and other practitioners have little knowledge of its historical roots and conceptual developments. This book fills that knowledge gap in a thought-provoking and readable format. This fascinating chronological journey along the many conceptual pathways to our modern understanding of evolutionary and genetic principles is a wonderful springboard for discussions in undergraduate or graduate seminars in evolutionary biology and genetics. But more than that, anyone interested in the history and philosophy of science will find much of value between its covers. - Provides a relative ranking of 70 seminal breakthroughs and paradigm shifts in the field of evolutionary biology and genetics - Modular format permits ready access to each described subject - Historical overview of a field whose concepts are central to all of biology and relevant to a broad audience of biologists, science historians, and philosophers of science - Extensively cross-referenced with a guide to landmark papers and books for each topic




Molecular Evolutionary Genetics


Book Description

-- "The Scientist"




Introduction to Evolutionary Genomics


Book Description

This book is the first of its kind to explain the fundamentals of evolutionary genomics. The comprehensive coverage includes concise descriptions of a variety of genome organizations, a thorough discussion of the methods used, and a detailed review of genome sequence processing procedures. The opening chapters also provide the necessary basics for readers unfamiliar with evolutionary studies. Features: introduces the basics of molecular biology, DNA replication, mutation, phylogeny, neutral evolution, and natural selection; presents a brief evolutionary history of life from the primordial seas to the emergence of humans; describes the genomes of prokaryotes, eukaryotes, vertebrates, and humans; reviews methods for genome sequencing, phenotype data collection, homology searches and analysis, and phylogenetic tree and network building; discusses databases of genome sequences and related information, evolutionary distances, and population genomics; provides supplementary material at an associated website.




Evolution in Four Dimensions, revised edition


Book Description

A pioneering proposal for a pluralistic extension of evolutionary theory, now updated to reflect the most recent research. This new edition of the widely read Evolution in Four Dimensions has been revised to reflect the spate of new discoveries in biology since the book was first published in 2005, offering corrections, an updated bibliography, and a substantial new chapter. Eva Jablonka and Marion Lamb's pioneering argument proposes that there is more to heredity than genes. They describe four “dimensions” in heredity—four inheritance systems that play a role in evolution: genetic, epigenetic (or non-DNA cellular transmission of traits), behavioral, and symbolic (transmission through language and other forms of symbolic communication). These systems, they argue, can all provide variations on which natural selection can act. Jablonka and Lamb present a richer, more complex view of evolution than that offered by the gene-based Modern Synthesis, arguing that induced and acquired changes also play a role. Their lucid and accessible text is accompanied by artist-physician Anna Zeligowski's lively drawings, which humorously and effectively illustrate the authors' points. Each chapter ends with a dialogue in which the authors refine their arguments against the vigorous skepticism of the fictional “I.M.” (for Ipcha Mistabra—Aramaic for “the opposite conjecture”). The extensive new chapter, presented engagingly as a dialogue with I.M., updates the information on each of the four dimensions—with special attention to the epigenetic, where there has been an explosion of new research. Praise for the first edition “With courage and verve, and in a style accessible to general readers, Jablonka and Lamb lay out some of the exciting new pathways of Darwinian evolution that have been uncovered by contemporary research.” —Evelyn Fox Keller, MIT, author of Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines “In their beautifully written and impressively argued new book, Jablonka and Lamb show that the evidence from more than fifty years of molecular, behavioral and linguistic studies forces us to reevaluate our inherited understanding of evolution.” —Oren Harman, The New Republic “It is not only an enjoyable read, replete with ideas and facts of interest but it does the most valuable thing a book can do—it makes you think and reexamine your premises and long-held conclusions.” —Adam Wilkins, BioEssays




The Origins of Theoretical Population Genetics


Book Description

Tracing the development of population genetics through the writings of such luminaries as Darwin, Galton, Pearson, Fisher, Haldane, and Wright, William B. Provine sheds light on this complex field as well as its bearing on other branches of biology.




Mutation-Driven Evolution


Book Description

The purpose of this book is to present a new theory of mutation-driven evolution, which is based on recent advances in genomics and evolutionary developmental biology. This theory asserts that the driving force of evolution is mutation and natural selection is of secondary importance.