The Full Set of Unitarizable Highest Weight Modules of Basic Classical Lie Superalgebras


Book Description

This work contains a complete description of the set of all unitarizable highest weight modules of classical Lie superalgebras. Unitarity is defined in the superalgebraic sense, and all the algebras are over the complex numbers. Part of the classification determines which real forms, defined by anti-linear anti-involutions, may occur. Although there have been many investigations for some special superalgebras, this appears to be the first systematic study of the problem.







Supersymmetry in Mathematics and Physics


Book Description

Supersymmetry was created by the physicists in the 1970's to give a unified treatment of fermions and bosons, the basic constituents of matter. Since then its mathematical structure has been recognized as that of a new development in geometry, and mathematicians have busied themselves with exploring this aspect. This volume collects recent advances in this field, both from a physical and a mathematical point of view, with an accent on a rigorous treatment of the various questions raised.




Higher Multiplicities and Almost Free Divisors and Complete Intersections


Book Description

Almost free divisors and complete intersections form a general class of nonisolated hypersurface and completer intersection singularities. They also include discriminants of mappings, bifurcation sets, and certain types of arrangements of hyperplanes such as Coxeter arrangements and generic arrangements. Associated to the singularities of this class is a "singular Milnor fibration" which has the same homotopy properties as the Milnor fibration for isolated singularities. This memoir deduces topological properties of singularities in a number of situations including: complements of hyperplane arrangements, various nonisolated complete intersections, nonlinear arrangements of hypersurfaces, functions on discriminants, singularities defined by compositions of functions, and bifurcation sets.




Pseudofunctors on Modules with Zero Dimensional Support


Book Description

Pseudofunctors with values on modules with zero dimensional support are constructed over the formally smooth category and residually finite category. Combining those pseudofunctors, a pseudofunctor over the category whose objects are Noetherian local rings and whose morphisms are local with finitely generated residue field extensions is constructed.




Factorizing the Classical Inequalities


Book Description

This memoir describes a new way of looking at the classical inequalities. The most famous such results, (those of Hilbert, Hardy, and Copson) may be interpreted as inclusion relationships, l[superscript italic]p [subset equality symbol] [italic capital]Y, between certain (Banach) sequence spaces, the norm of the injection being the best constant of the particular inequality. The inequalities of Hilbert, Hardy, and Copson all share the same space [italic capital]Y. That space -- alias [italic]ces([italic]p) -- is central to many celebrated inequalities, and thus is studied here in considerable detail.




Automorphisms of the Lattice of Recursively Enumerable Sets


Book Description

A version of Harrington's [capital Greek]Delta3-automorphism technique for the lattice of recursively enumerable sets is introduced and developed by reproving Soare's Extension Theorem. Then this automorphism technique is used to show two technical theorems: the High Extension Theorem I and the High Extension Theorem II. This is a degree-theoretic technique for constructing both automorphisms of the lattice of r.e. sets and isomorphisms between various substructures of the lattice.




Compact Connected Lie Transformation Groups on Spheres with Low Cohomogeneity, I


Book Description

The cohomogeneity of a transformation group ([italic capitals]G, X) is, by definition, the dimension of its orbit space, [italic]c = dim [italic capitals]X, G. By enlarging this simple numerical invariant, but suitably restricted, one gradually increases the complexity of orbit structures of transformation groups. This is a natural program for classical space forms, which traditionally constitute the first canonical family of testing spaces, due to their unique combination of topological simplicity and abundance in varieties of compact differentiable transformation groups.




Hilbert Modules over Operator Algebras


Book Description

Addresses the three-dimensional generalization of category, offering a full definition of tricategory; a proof of the coherence theorem for tricategories; and a modern source of material on Gray's tensor product of 2-categories. Of interest to research mathematicians; theoretical physicists, algebraic topologists; 3-D computer scientists; and theoretical computer scientists. Society members, $19.00. No index. Annotation copyright by Book News, Inc., Portland, OR




Markov Fields over Countable Partially Ordered Sets: Extrema and Splitting


Book Description

Various notions of the Markov property relative to a partial ordering have been proposed by both physicists and mathematicians. This work develops techniques for stying Markov fields on partially ordered sets. We introduce random transformations of the index set which preserves the Markov property of the field. These transformations yield new classes of Markov fields starting from relatively simple ones. Examples include a model for crack formation and a model for the distribution of fibres in a composite material.