Stem Cells and the Future of Regenerative Medicine


Book Description

Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.




Adult and Embryonic Stem Cells


Book Description

This volume will cover a series of reviews on stem cells including adult and embryonic stem cells. Speakers were invited to present these talks during the Stem Cell Symposia in fall of 2010, in Samsun, Turkey. Unique aspect of this volume is that it brings a multidisciplinary aspect of stem cells extracted from a symposium.




Regenerative Rehabilitation


Book Description

This contributed volume presents the current state of research on regenerative rehabilitation across a broad range of neuro- and musculoskeletal tissues. At its core, the primary goal of regenerative rehabilitation is to restore function after damage to bones, skeletal muscles, cartilage, ligaments/tendons, or tissues of the central and peripheral nervous systems. The authors describe the physiology of these neuro- and musculoskeletal tissue types and their inherent plasticity. The latter quality is what enables these tissues to adapt to mechanical and/or chemical cues to improve functional capacity. As a result, readers will learn how regenerative rehabilitation exploits that quality, to trigger positive changes in tissue function. Combining basic, translational, and clinical aspects of the topic, the book offers a valuable resource for both scientists and clinicians in the regenerative rehabilitation field.




Principles of Regenerative Medicine


Book Description

Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. - Key for all researchers and instituions in Stem Cell Biology, Bioengineering, and Developmental Biology - The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine - New discoveries from leading researchers on restoration of diseased tissues and organs




Stem Cells and Regenerative Medicine


Book Description

The commercialization of biotechnology has resulted in an intensive search for new biological resources for the purposes of increasing food productivity, medicinal applications, energy production, and various other applications. Although biotechnology has produced many benefits for humanity, the exploitation of the planet's natural resources has also resulted in some undesirable consequences such as diminished species biodiversity, climate change, environmental contamination, and intellectual property right and patent concerns.This book discusses the role of biological, ecological, environmental, ethical, and economic issues in the interaction between biotechnology and biodiversity, using different contexts. No other book has discussed all of these issues in a comprehensive manner. Of special interest is their impact when biotechnology is shared between developed and developing countries, and the lack of recognition of the rights of indigenous populations and traditional farmers in developing countries by large multinational corporations.




Stem Cell Drugs - A New Generation of Biopharmaceuticals


Book Description

This invaluable resource discusses the current revolution in stem cell-based drugs and their potential use in clinical applications. Each chapter is contributed by a pre-eminent scientist in the field. An introductory section presents current stem cell drugs and stem cell-based products and a discussion of production, quality control, mechanisms, and efficacy. Following sections include discussions on stem cell-derived microvesicles based products, and derived exosomes based products. Stem Cell Drugs - A New Generation of Biopharmaceuticals and the other books in the Stem Cells in Clinical Applications series are invaluable to scientists, researchers, advanced students and clinicians working in stem cells, regenerative medicine or tissue engineering. This groundbreaking volume is also essential reading for those researching or studying drug development or pharmaceutical science.




Cardiac Regeneration


Book Description

This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.




Tissue Engineering and Regenerative Medicine


Book Description

This new series, based on a bi-annual conference and its topics, represents a major contribution to the emerging science of cancer research and regenerative medicine. Each volume brings together some of the most pre-eminent scientists working on cancer biology, cancer treatment, cancer diagnosis, cancer prevention and regenerative medicine to share information on currently ongoing work which will help shape future therapies. These volumes are invaluable resources not only for already active researchers or clinicians but also for those entering these fields, plus those in industry. Tissue Engineering and Regenerative Medicine is a proceedings volume which reflects papers presented at the 3rd bi-annual Innovations in Regenerative Medicine and Cancer Research conference; taken with its companion volume Stem Cells: Biology and Engineering it provides a complete overview of the papers from that meeting of international experts.




Stem Cell Therapies


Book Description

Stem cells offer tremendous promise for advancing health and medicine. Whether being used to replace damaged cells and organs or else by supporting the body's intrinsic repair mechanisms, stem cells hold the potential to treat such debilitating conditions as Parkinson's disease, diabetes, and spinal cord injury. Clinical trials of stem cell treatments are under way in countries around the world, but the evidence base to support the medical use of stem cells remains limited. Despite this paucity of clinical evidence, consumer demand for treatments using stem cells has risen, driven in part by a lack of available treatment options for debilitating diseases as well as direct-to-consumer advertising and public portrayals of stem cell-based treatments. Clinics that offer stem cell therapies for a wide range of diseases and conditions have been established throughout the world, both in newly industrialized countries such as China, India, and Mexico and in developed countries such as the United States and various European nations. Though these therapies are often promoted as being established and effective, they generally have not received stringent regulatory oversight and have not been tested with rigorous trials designed to determine their safety and likely benefits. In the absence of substantiated claims, the potential for harm to patients - as well as to the field of stem cell research in general - may outweigh the potential benefits. To explore these issues, the Institute of Medicine, the National Academy of Sciences, and the International Society for Stem Cell Research held a workshop in November 2013. "Stem Cell Therapies" summarizes the workshop. Researchers, clinicians, patients, policy makers, and others from North America, Europe, and Asia met to examine the global pattern of treatments and products being offered, the range of patient experiences, and options to maximize the well-being of patients, either by protecting them from treatments that are dangerous or ineffective or by steering them toward treatments that are effective. This report discusses the current environment in which patients are receiving unregulated stem cell offerings, focusing on the treatments being offered and their risks and benefits. The report considers the evidence base for clinical application of stem cell technologies and ways to assure the quality of stem cell offerings.




Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles


Book Description

This book summarizes the NATO Advanced Research Workshop (ARW) on “Nanoengineered Systems for Regenerative Medicine” that was organized under the auspices of the NATO Security through Science Program. I would like to thank NATO for supporting this workshop via a grant to the co-directors. The objective of ARW was to explore the various facets of regenerative me- cine and to highlight role of the “the nano-length scale” and “nano-scale systems” in defining and controlling cell and tissue environments. The development of novel tissue regenerative strategies require the integration of new insights emerging from studies of cell-matrix interactions, cellular signalling processes, developmental and systems biology, into biomaterials design, via a systems approach. The chapters in the book, written by the leading experts in their respective disciplines, cover a wide spectrum of topics ranging from stem cell biology, developmental biology, ce- matrix interactions, and matrix biology to surface science, materials processing and drug delivery. We hope the contents of the book will provoke the readership into developing regenerative medicine paradigms that combine these facets into cli- cally translatable solutions. This NATO meeting would not have been successful without the timely help of Dr. Ulrike Shastri, Sanjeet Rangarajan and Ms. Sabine Benner, who assisted in the organization and implementation of various elements of this meeting. Thanks are also due Dr. Fausto Pedrazzini and Ms. Alison Trapp at NATO HQ (Brussels, Belgium). The commitment and persistence of Ms.