The Future of Glycerol


Book Description

By-products of global biodiesel manufacturing are a modern day global fact responsible for igniting a number of year's worldwide intense research activity into human chemical ingenuity. This highly anticipated 2nd Edition depicts how practical limitations posed by glycerol chemistry are solved based on the understanding of the fundamental chemistry of glycerol and by application of catalysis science and technology. The authors report and comment on employable, practical avenues applicable to convert glycerol into value added products of mass consumption. The best-selling reference book in the.




The Future of Glycerol


Book Description

This book depicts how practical limitations posed by glycerol chemistry are solved based on the understanding of the fundamental chemistry of glycerol and by application of catalysis science and technology. By-products of global biodiesel manufacturing are a modern day global fact responsible for igniting a number of year's worldwide intense research activity into human chemical ingenuity. This book depicts how practical limitations posed by glycerol chemistry are solved based on the understanding of the fundamental chemistry of glycerol and by application of catalysis science and technology. The authors report and comment on employable, practical avenues applicable to convert glycerol into value added products of mass consumption. Essential reading for anyone interested in understanding whether biodisel and glycerol refineries are convenient and economically sound.




Refining Biomass Residues for Sustainable Energy and Bioproducts


Book Description

The utilization of various types of biomass residue to produce products such as biofuels and biochemicals means biorefinery technology using biomass residues may become a one-stop solution to the increasing need for sustainable, non-fossil sources of energy and chemicals.Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment and Economics focuses on the various biorefineries currently available and discusses their uses, challenges, and future developments. This book introduces the concept of integrated biorefinery systems, as well as their operation and feedstock sourcing. It explores the specificities, current developments, and potential end products of various types of residue, from industrial and municipal to agricultural and marine, as well as residue from food industries. Sustainability issues are discussed at length, including life cycle assessment, economics, and cost analysis of different biorefinery models. In addition, a number of global case studies examine successful experiences in different regions.This book is an ideal resource for researchers and practitioners in the field of bioenergy and waste management who are looking to learn about technologies involved in residue biorefinery systems, how to reduce their environmental impacts, and how to ensure their commercial viability. - Explores a range of different biorefinery categories, such as industrial, agricultural, and marine biomass residues - Includes a Life Cycle Assessment of biorefinery models, in addition to costs and market analysis. - Features case studies from around the world and is written by an international team of authors




Glycerine Production and Transformation


Book Description

The increase in the amount of glycerin in the market is a burden for all producers, especially those operating in the biodiesel sector: reuse options are in fact limited for the management of this by-product. Glycerol enhancement has therefore become a priority to improve the sustainability of the biodiesel industry. Nevertheless, the multifunctionality of glycerol makes it a promising precursor for different types of production (fuel/biofuel, chemical products). This conversion has therefore become a subject of multifaceted research that requires an exchange of knowledge across many sectors. In this book, different disciplines (chemistry, biology, engineering, etc.) have been taken into consideration to propose an interdisciplinary point of view on different aspects.




Biorefinery of Oil Producing Plants for Value-Added Products


Book Description

Biorefinery of Oil Producing Plants for Value-Added Products An instructive and up-to-date pretreatment and industrial applications of oil producing plants Biorefinery of Oil Producing Plants for Value-Added Products is a two-volume set that delivers a comprehensive exploration of oil producing plants, from their availability to their pretreatment, bioenergy generation, chemical generation, bioproduct generation, and economic impact. The distinguished team of editors has included a wide variety of highly instructive resources written by leading contributors to the field. This set explores the current and future potential of bioenergy production to address the energy and climate crisis, as well as the technologies used to produce materials like biogas, biodiesel, bioethanol, biobutanol, biochar, fuel pellets, and biohydrogen. It also discusses the production of biobased chemicals, including bio-oil, biosurfactants, catanionic surfactants, glycerol, biovanillin, bioplastic, and plant-oil based polyurethanes. Concluding with an insightful analysis of the economic effects of oil producing plants, the set also offers readers: A thorough introduction to the availability of oil producing plants, including palm oil, castor oil, jatropha, nyamplung, and coconut A comprehensive exploration of the pretreatment of oil producing plants, including the physical, chemical and biological pretreatment of lignocellulosic biomass Practical discussion of the generation of bioenergy, including biogas generation in the palm oil mill and biodiesel production techniques using jatropha In-depth examinations of the generation of biobased chemicals, including those produced from the tobacco plant Perfect for researchers and industry practitioners involved with the biorefinery of oil producing plants, Biorefinery of Oil Producing Plants for Value-Added Products also belongs in the libraries of undergraduate and graduate students studying agriculture, chemistry, engineering, and microbiology.




Glycerol


Book Description

This book is aimed at providing a concise discussion on the use of glycerol as a renewable raw material for the chemical industry. With the increasing use of biodiesel produced from oils and fats, there is a surplus of glycerol in the world. This abundant and rather cheap raw material can be transformed in commodities and specialty chemicals, as well as in fuels. The book describes the main processes of chemical transformation of glycerol, highlighting those that are currently in commercial use and pointing out potential processes to be used in the future. The first chapter introduces the concept of biofuel and briefly describes the production of biodiesel. It also highlights glycerol as the main byproduct of biodiesel synthesis and presents some numbers regarding the world production of glycerol. The second chapter shows the common uses of glycerol and addresses the point whether or not they can drain the large amounts of glycerol produced from biodiesel. The chapter addresses pros and cons of each use. The third chapter covers the main biotechnological processes of glycerol transformation. The fourth chapter thoroughly describes the main thermochemical processes to transform glycerol into commodities, products that will be further used in the chemical industry to produce polymers, for instance. The fifth chapter covers the production of glycerol derivatives of high added-value. The sixth chapter addresses the use of glycerol in the context of a biorefinery. The main idea is to show that many of the processes described in the previous chapters could be entirely green, using exclusively renewable raw materials.




Biodiesel Science and Technology


Book Description

Biodiesel production is a rapidly advancing field worldwide, with biodiesel fuel increasingly being used in compression ignition (diesel) engines. Biodiesel has been extensively studied and utilised in developed countries, and it is increasingly being introduced in developing countries, especially in regions with high potential for sustainable biodiesel production.Initial sections systematically review feedstock resources and vegetable oil formulations, including the economics of vegetable oil conversion to diesel fuel, with additional coverage of emerging energy crops for biodiesel production. Further sections review the transesterification process, including chemical (catalysis) and biochemical (biocatalysis) processes, with extended coverage of industrial process technology and control methods, and standards for biodiesel fuel quality assurance. Final chapters cover the sustainability, performance and environmental issues of biodiesel production, as well as routes to improve glycerol by-product usage and the development of next-generation products.Biodiesel science and technology: From soil to oil provides a comprehensive reference to fuel engineers, researchers and academics on the technological developments involved in improving biodiesel quality and production capacity that are crucial to the future of the industry. - Evaluates biodiesel as a renewable energy source and documents global biodiesel development - The outlook for biodiesel science and technology is presented exploring the challenges faced by the global diesel industry - Reviews feedstock resources and vegetable oil formation including emerging crops and the agronomic potential of underexploited oil crops




Horizons in Bioprocess Engineering


Book Description

This book is divided into four parts that outline the use of science and technology for applications pertaining to chemical and bioprocess engineering. The book endeavors to help academia, researchers, and practitioners to use the principles and tools of Chemical and Bioprocess Engineering in a pertinent way, while attempting to point out the novel thoughts associated with the brain storming concepts encountered. As an example, the ability to use case studies appropriately is more important, to most practitioners.




Advances in Biorefineries


Book Description

Biorefineries are an essential technology in converting biomass into biofuels or other useful materials. Advances in Biorefineries provides a comprehensive overview of biorefining processing techniques and technologies, and the biofuels and other materials produced. Part one focuses on methods of optimizing the biorefining process and assessing its environmental and economic impact. It also looks at current and developing technologies for producing value-added materials. Part two goes on to explore these materials with a focus on biofuels and other value-added products. It considers the properties, limitations, and practical applications of these products and how they can be used to meet the increasing demand for renewable and sustainable fuels as an alternative to fossil fuels. Advances in Biorefineries is a vital reference for biorefinery/process engineers, industrial biochemists/chemists, biomass/waste scientists and researchers and academics in the field. - A comprehensive and systematic reference on the advanced biomass recovery and conversion processes used in biorefineries - Reviews developments in biorefining processes - Discusses the wide range of value-added products from biorefineries, from biofuel to biolubricants and bioadhesives




Advances in Organometallic Chemistry and Catalysis


Book Description

A contemporary compilation of recent achievements in organometallic chemistry The prestigious International Conference on Organometallic Chemistry (ICOMC) was launched in 1963, providing a forum for researchers from around the world to share their findings and explore new paths to advance our knowledge and application of organometallic chemistry. The 25th ICOMC, held in Lisbon in 2012, gathered more than 1,200 participants from 54 countries. This volume celebrates the 25th Silver Edition and the 50th Gold Year of the ICOMC. Featuring contributions from invited 25th ICOMC speakers, Advances in Organometallic Chemistry and Catalysis highlights recent achievements and new and emerging areas of research in the field. Its seven sections cover: Activation and Functionalization of Carbon Single Bonds and Small Molecules Organometallic Synthesis and Catalysis Organometallic Polymerization Catalysis Organometallic Polymers and Materials Organometallic Chemistry and Sustainable Energy Bioorganometallic Chemistry Organometallic Electrochemistry Chapters discuss fundamental underlying concepts, offer illustrative examples and cases, and explore future avenues for continued research. Readers will discover basic principles and properties of organometallic compounds, reaction mechanisms, and detailed descriptions of current applications. Collectively, these chapters underscore the versatility, richness, and potential of modern organometallic chemistry, including its interrelationships with other scientific disciplines. All the contributions are extensively referenced, providing a gateway to the most important original research papers and reviews in organometallic chemistry. Presenting a contemporary understanding of organometallic chemistry and its many applications, Advances in Organometallic Chemistry and Catalysis is recommended for all researchers in the field, from students to advanced investigators.