Book Description
The purpose of this book is to , particularly those associated with the calculus of variations, in a modern geometric way.
Author : D. J. Saunders
Publisher : Cambridge University Press
Page : 307 pages
File Size : 11,17 MB
Release : 1989-03-09
Category : Mathematics
ISBN : 0521369487
The purpose of this book is to , particularly those associated with the calculus of variations, in a modern geometric way.
Author : Ivan Kolar
Publisher : Springer Science & Business Media
Page : 440 pages
File Size : 20,30 MB
Release : 2013-03-09
Category : Mathematics
ISBN : 3662029502
The aim of this work is threefold: First it should be a monographical work on natural bundles and natural op erators in differential geometry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general concepts. The vector bundle A kT* M is in fact the value of a functor, which associates a bundle over M to each manifold M and a vector bundle homomorphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M.
Author : Anders Kock
Publisher : Cambridge University Press
Page : 317 pages
File Size : 16,13 MB
Release : 2010
Category : Mathematics
ISBN : 0521116732
This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basic constructions in local differential geometry and, in fact, form an inviting gateway to differential geometry, and also to some differential-geometric notions that exist in algebraic geometry. The presentation conveys the real strength of this approach to differential geometry. Concepts are clarified, proofs are streamlined, and the focus on infinitesimal spaces motivates the discussion well. Some of the specific differential-geometric theories dealt with are connection theory (notably affine connections), geometric distributions, differential forms, jet bundles, differentiable groupoids, differential operators, Riemannian metrics, and harmonic maps. Ideal for graduate students and researchers wishing to familiarize themselves with the field.
Author : William L. Burke
Publisher : Cambridge University Press
Page : 440 pages
File Size : 13,66 MB
Release : 1985-05-31
Category : Mathematics
ISBN : 9780521269292
This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.
Author : Theodore Frankel
Publisher : Cambridge University Press
Page : 749 pages
File Size : 45,88 MB
Release : 2011-11-03
Category : Mathematics
ISBN : 1139505610
This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.
Author : Jet Nestruev
Publisher : Springer Nature
Page : 433 pages
File Size : 40,14 MB
Release : 2020-09-10
Category : Mathematics
ISBN : 3030456501
This book gives an introduction to fiber spaces and differential operators on smooth manifolds. Over the last 20 years, the authors developed an algebraic approach to the subject and they explain in this book why differential calculus on manifolds can be considered as an aspect of commutative algebra. This new approach is based on the fundamental notion of observable which is used by physicists and will further the understanding of the mathematics underlying quantum field theory.
Author : Robert L. Bryant
Publisher : Springer Science & Business Media
Page : 483 pages
File Size : 28,53 MB
Release : 2013-06-29
Category : Mathematics
ISBN : 1461397146
This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.
Author : Steinar Johannesen
Publisher : CRC Press
Page : 595 pages
File Size : 47,35 MB
Release : 2016-12-08
Category : Mathematics
ISBN : 1315342626
This book provides a systematic presentation of the mathematical foundation of modern physics with applications particularly within classical mechanics and the theory of relativity. Written to be self-contained, Smooth Manifolds and Fibre Bundles with Applications to Theoretical Physics provides complete and rigorous proofs of all the results presented within. Among the themes illustrated in the book are differentiable manifolds, differential forms, fiber bundles and differential geometry with non-trivial applications especially within the general theory of relativity. The emphasis is upon a systematic and logical construction of the mathematical foundations. It can be used as a textbook for a pure mathematics course in differential geometry, assuming the reader has a good understanding of basic analysis, linear algebra and point set topology. The book will also appeal to students of theoretical physics interested in the mathematical foundation of the theories.
Author : Andreas Kriegl
Publisher : American Mathematical Soc.
Page : 631 pages
File Size : 37,30 MB
Release : 1997
Category : Mathematics
ISBN : 0821807803
For graduate students and research mathematicians interested in global analysis and the analysis of manifolds, lays the foundations for a differential calculus in infinite dimensions and discusses applications in infinite-dimension differential geometry and global analysis not involving Sobolev completions and fixed-point theory. Shows how the notion of smoothness as mapping smooth curves to smooth curves coincides with all known reasonable concepts up to Frechet spaces. Then develops a calculus of holomorphic mappings, and another of real analytical mapping. Emphasizes regular infinite dimensional Lie groups. Annotation copyrighted by Book News, Inc., Portland, OR
Author : Shiing-Shen Chern
Publisher : World Scientific
Page : 206 pages
File Size : 26,39 MB
Release : 2005
Category : Mathematics
ISBN : 9812383573
Riemann-Finsler geometry is a subject that concerns manifolds with Finsler metrics, including Riemannian metrics. It has applications in many fields of the natural sciences. Curvature is the central concept in Riemann-Finsler geometry. This invaluable textbook presents detailed discussions on important curvatures such the Cartan torsion, the S-curvature, the Landsberg curvature and the Riemann curvature. It also deals with Finsler metrics with special curvature or geodesic properties, such as projectively flat Finsler metrics, Berwald metrics, Finsler metrics of scalar curvature or isotropic S-curvature, etc. Instructive examples are given in abundance, for further description of some important geometric concepts. The text includes the most recent results, although many of the problems discussed are classical. Graduate students and researchers in differential geometry.