The Global Theory of Minimal Surfaces in Flat Spaces


Book Description

In the second half of the twentieth century the global theory of minimal surface in flat space had an unexpected and rapid blossoming. Some of the classical problems were solved and new classes of minimal surfaces found. Minimal surfaces are now studied from several different viewpoints using methods and techniques from analysis (real and complex), topology and geometry. In this lecture course, Meeks, Ros and Rosenberg, three of the main architects of the modern edifice, present some of the more recent methods and developments of the theory. The topics include moduli, asymptotic geometry and surfaces of constant mean curvature in the hyperbolic space.




The Global Theory of Minimal Surfaces in Flat Spaces


Book Description

In the second half of the twentieth century the global theory of minimal surface in flat space had an unexpected and rapid blossoming. Some of the classical problems were solved and new classes of minimal surfaces found. Minimal surfaces are now studied from several different viewpoints using methods and techniques from analysis (real and complex), topology and geometry. In this lecture course, Meeks, Ros and Rosenberg, three of the main architects of the modern edifice, present some of the more recent methods and developments of the theory. The topics include moduli, asymptotic geometry and surfaces of constant mean curvature in the hyperbolic space.




Minimal Surfaces from a Complex Analytic Viewpoint


Book Description

This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann–Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi–Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.




A Survey on Classical Minimal Surface Theory


Book Description

Meeks and Pérez extend their 2011 survey article "The classical theory of Minimal surfaces" in the Bulletin of the American Mathematical Society to include other recent research results. Their topics include minimal surfaces with finite topology and more than one end, limits of embedded minimal surfaces without local area or curvature bounds, conformal structure of minimal surfaces, embedded minimal surfaces of finite genus, topological aspects of minimal surfaces, and Calabi-Yau problems. There is no index. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com).




Algebraic Groups and Lie Groups with Few Factors


Book Description

Algebraic groups are treated in this volume from a group theoretical point of view and the obtained results are compared with the analogous issues in the theory of Lie groups. The main body of the text is devoted to a classification of algebraic groups and Lie groups having only few subgroups or few factor groups of different type. In particular, the diversity of the nature of algebraic groups over fields of positive characteristic and over fields of characteristic zero is emphasized. This is revealed by the plethora of three-dimensional unipotent algebraic groups over a perfect field of positive characteristic, as well as, by many concrete examples which cover an area systematically. In the final section, algebraic groups and Lie groups having many closed normal subgroups are determined.




Noncommutative Stationary Processes


Book Description




Noncommutative Geometry


Book Description

Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.




Big Queues


Book Description




SPDE in Hydrodynamics: Recent Progress and Prospects


Book Description

Of the three lecture courses making up the CIME summer school on Fluid Dynamics at Cetraro in 2005 reflected in this volume, the first, due to Sergio Albeverio describes deterministic and stochastic models of hydrodynamics. In the second course, Franco Flandoli starts from 3D Navier-Stokes equations and ends with turbulence. Finally, Yakov Sinai, in the 3rd course, describes some rigorous mathematical results for multidimensional Navier-Stokes systems and some recent results on the one-dimensional Burgers equation with random forcing.




Mixed Finite Elements, Compatibility Conditions, and Applications


Book Description

Since the early 70's, mixed finite elements have been the object of a wide and deep study by the mathematical and engineering communities. The fundamental role of this method for many application fields has been worldwide recognized and its use has been introduced in several commercial codes. An important feature of mixed finite elements is the interplay between theory and application. Discretization spaces for mixed schemes require suitable compatibilities, so that simple minded approximations generally do not work and the design of appropriate stabilizations gives rise to challenging mathematical problems. This volume collects the lecture notes of a C.I.M.E. course held in Summer 2006, when some of the most world recognized experts in the field reviewed the rigorous setting of mixed finite elements and revisited it after more than 30 years of practice. Applications, in this volume, range from traditional ones, like fluid-dynamics or elasticity, to more recent and active fields, like electromagnetism.