The Holobiont Imperative


Book Description

This book examines how the growing knowledge of the huge range of animal-bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Individuals from simple invertebrates to human are not solitary, homogenous entities but consist of complex communities of many species that likely evolved during a billion years of coexistence. Defining the individual microbe-host conversations in these consortia, is a challenging but necessary step on the path to understanding the function of the associations as a whole. The hologenome theory of evolution considers the holobiont with its hologenome as a unit of selection in evolution. This new view may have profound impact on understanding a strictly microbe/symbiont-dependent life style and its evolutionary consequences. It may also affect the way how we approach complex environmental diseases from corals (coral bleaching) to human (inflammatory bowel disease etc). The book is written for scientists as well as medically interested persons in the field of immunobiology, microbiology, evolutionary biology, evolutionary medicine and corals.




Microbiome-Host Interactions


Book Description

Microbiota are a promising and fascinating subject in biology because they integrate the microbial communities in humans, animals, plants, and the environment. In humans, microbiota are associated with the gut, skin, and genital, oral, and respiratory organs. The plant microbial community is referred to as "holobiont," and it is influential in the maintenance and health of plants, which themselves play a role in animal health and the environment. The contents of Microbiome-Host Interactions cover all areas as well as new research trends in the fields of plant, animal, human, and environmental microbiome interactions. The book covers microbiota in polar soil environments, in health and disease, in Caenorhabditis elegans, and in agroecosystems, as well as in rice root and actinorhizal root nodules, speleothems, and marine shallow-water hydrothermal vents. Moreover, this book provides comprehensive accounts of advanced next-generation DNA sequencing, metagenomic techniques, high-throughput 16S rRNA sequencing, and understanding nucleic acid sequence data from fungal, algal, viral, bacterial, cyanobacterial, actinobacterial, and archaeal communities using QIIME software (Quantitative Insights into Microbial Ecology). FEATURES Summarizes recent insight in microbiota and host interactions in distinct habitats, including Antarctic, hydrothermal vents, speleothems, oral, skin, gut, feces, reproductive tract, soil, root, root nodules, forests, and mangroves Illustrates the high-throughput amplicon sequencing, computational techniques involved in the microbiota analysis, downstream analysis and visualization, and multivariate analysis commonly used for microbiome analysis Describes probiotics and prebiotics in the composition of the gut microbiota, skin microbiome impact in dermatologic disease prevention, and microbial communities in the reproductive tract of humans and animals Presents information in a reachable way for students, teachers, researchers, microbiologists, computational biologists, and other professionals who are interested in strengthening or enlarging their knowledge about microbiome analysis with next-generation DNA sequencing in the different branches of the sciences




Can Microbial Communities Regenerate?


Book Description

"You take antibiotics to fight an infection. Unfortunately, the treatment also kills the community of bacteria in your gut microbiome; you now have digestion issues. You might start eating yogurt to reintroduce good bacteria. Or, if the bacterial community is more significantly disordered, you might need a "fecal microbiota transplant" - a doctor transfers stool from a healthy donor into your gut. The new bacteria community thrives, and you can again digest your food. If all the same types of bacteria are present in this new community, has your microbiome "regenerated"? What if the bacteria are completely different, but they perform the same function? How do the answers to these questions change if we look at the cells in a regrown salamander limb or the flora in a replanted forest? In this second book in the Regeneration Series, a philosopher of science and molecular biologist, S. Andrew Inkpen and W. Ford Dolittle, investigate these questions and their consequences. As the examples above show, asking about whether microbial communities can regenerate, what that might mean, and why it matters is not just an academic question. Offering provocations and an understanding that go beyond the descriptive work that has been published to date, this book offers an accessible conceptual and theoretical understanding of regeneration and evolution in microbial communities that will be useful across disciplines including in philosophy of biology, conservation biology, microbiomics, evolutionary biology, and community ecology"--




Sustainable Agriculture Reviews 60


Book Description

In the context of rising adverse effects of climate change on agriculture, there is a need for advanced methods and practices to manage soils for production of food and energy. This book presents the latest advances in microbial processes that control plant growth, with focus on genomic tools, microbial interactions with the plant and soils habitats, mobilization of plant nutrients, agricultural waste management, biodegradation, bioremediation, carbon sequestration, land reclamation, plant growth promotion, suppression of plant pathogens, induced systemic resistance and tolerance against biotic and abiotic stresses.




YOUMARES 8 – Oceans Across Boundaries: Learning from each other


Book Description

This open access book presents the proceedings volume of the YOUMARES 8 conference, which took place in Kiel, Germany, in September 2017, supported by the German Association for Marine Sciences (DGM). The YOUMARES conference series is entirely bottom-up organized by and for YOUng MARine RESearchers. Qualified early career scientists moderated the scientific sessions during the conference and provided literature reviews on aspects of their research field. These reviews and the presenters’ conference abstracts are compiled here. Thus, this book discusses highly topical fields of marine research and aims to act as a source of knowledge and inspiration for further reading and research.




Cellular Dialogues in the Holobiont


Book Description

This book examines protist-, animal- or plant-bacterial interactions and symbioses. These symbioses rely on continuous cell-to-cell communications. The goals of this book are to explore, explain and expose these dialogues across a broad spectrum of plant and animal eukaryotes to a broad field of biologists.




Symbiosis as a Source of Evolutionary Innovation


Book Description

These original contributions by symbiosis biologists and evolutionary theorists address the adequacy of the prevailing neo-Darwinian concept of evolution in the light of growing evidence that hereditary symbiosis, supplemented by the gradual accumulation of heritable mutation, results in the origin of new species and morphological novelty.A departure from mainstream biology, the idea of symbiosis--as in the genetic and metabolic interactions of the bacterial communities that became the earliest eukaryotes and eventually evolved into plants and animals--has attracted the attention of a growing number of scientists.These original contributions by symbiosis biologists and evolutionary theorists address the adequacy of the prevailing neo-Darwinian concept of evolution in the light of growing evidence that hereditary symbiosis, supplemented by the gradual accumulation of heritable mutation, results in the origin of new species and morphological novelty. They include reports of current research on the evolutionary consequences of symbiosis, the protracted physical association between organisms of different species. Among the issues considered are individuality and evolution, microbial symbioses, animal-bacterial symbioses, and the importance of symbiosis in cell evolution, ecology, and morphogenesis. Lynn Margulis, Distinguished Professor of Botany at the University of Massachusetts at Amherst, is the modern originator of the symbiotic theory of cell evolution. Once considered heresy, her ideas are now part of the microbiological revolution. ContributorsPeter Atsatt, Richard C. Back, David Bermudes, Paola Bonfante-Fasolo, René Fester, Lynda J. Goff, Anne-Marie Grenier, Ricardo Guerrero, Robert H. Haynes, Rosmarie Honegger, Gregory Hinkle, Kwang W. Jeon, Bryce Kendrick, Richard Law, David Lewis, Lynn Margulis, John Maynard Smith, Margaret J. McFall-Ngai, Paul Nardon, Kenneth H. Nealson, Kris Pirozynski, Peter W. Price, Mary Beth Saffo, Jan Sapp, Silvano Scannerini, Werner Schwemmler, Sorin Sonea, Toomas H. Tiivel, Robert K. Trench, Russell Vetter







The Sentient Cell


Book Description

All species, extant and extinct, from the simplest unicellular prokaryotes to humans, have an existential consciousness. Without sentience, the first cells that emerged some 4 billion years ago would have been evolutionary dead-ends, unable to survive in the chaotic, dangerous environment in which life first appeared and evolved. In this book, Arthur Reber's theory, the Cellular Basis of Consciousness (CBC), is outlined and distinguished from those models that argue that minds could be instantiated on artificial entities and those that maintain consciousness requires a nervous system. The CBC framework takes a novel approach to classic topics such as the origin-of-life, philosophy of mind, the role of genes, the impact of cognition, and how biological information is processed by all species. It also calls for a rethinking of a variety of issues including the moral implications of the sentient capacities of all species, how welfare concerns need to be expanded beyond where they currently are, and critically, how all life is intertwined in a coordinated cognitive ecology. The Sentient Cell explores this revolutionary model, which updates the standard neo-Darwinian framework within which current approaches operate and examines the underlying biomolecular features that are the likely candidates for the "invention" of consciousness and outline their role in cellular life.